19300份电子病案首页填写质量分析  被引量:23

Analysis of the Quality of the Front Sheet of 19300 Electronic Medical Records

在线阅读下载全文

作  者:陈娴[1] 王占明[1] 范艳妮[1] 张晓雪[1] 黄志中[1] 

机构地区:[1]第四军医大学唐都医院,西安市710038

出  处:《中国病案》2016年第6期11-14,共4页Chinese Medical Record

摘  要:目的检查电子病案首页填写质量,分析缺陷原因并提出整改措施。方法利用军卫一号系统调出2015年8月-9月期间出院的19 300名患者的电子病案,对病案首页的基本信息、诊断信息、手术信息和其它信息的填写质量情况逐项检查并归类分析。结果病案首页缺陷率为16.08%(3 104/19 300),3 104份缺陷病案存在7658项缺陷内容,且缺陷主要集中在诊断信息(56.49%)和其它信息(24.90%)。病案首页缺陷问题较多,主要集中在:诊断符合情况填写缺陷(16.38%)、主要诊断选择错误(14.33%)、输血相关信息填写错误(11.32%)、病理诊断漏填或错填(9.53%)、手术操作信息填写错误(9.17%)以及治疗结果漏填或错填(5.55%)。结论该院电子病案首页填写质量不容乐观,各类人员存在认识不足、业务素质不高、履职不严等问题,需各部门共同努力,以提高病案首页填写质量。Objective To inspect the quality of electronic medical record and analyze the reason of defect to table constructive proposals. Methods Use"Jun Wei No.1"system to call out the electronic medical record to 19300 patients from the period August to September, 2015. Check, classify and analyze the information from the front page,including basic,diagnostic,operative,and other relative message.Results Font-page defect percentage is 16.08%( 3104/19300), including 7658 defective contents. Most of the defect occurs on diagnosis information(56.49%)and"others"(24.90%). There are many problems showing on the front page, focusing on: diagnostic coincidence(16.38%), election of diagnostic errors(14.33%),blood transfusion filling case(11.32%), diagnostic filling case(9.53%), operation information filling case(9.17%), therapeutic outcome information losing and error(5.55%).Conclusion The condition of electronic medical record input process in this hospital is not optimistic, which illustrates that staffs are not concentrate on enough, working competence are insufficient, performance is still lack.Thus, every departments should work together to improve the quality of electronic medical record fill-in system.

关 键 词:电子病案 首页填写 质量分析 

分 类 号:R197.323[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象