基于代际公平的碳排放权分配研究  被引量:25

Allocation of carbon emissions right based on the intergenerational equity

在线阅读下载全文

作  者:王慧慧[1] 刘恒辰 何霄嘉[2] 曾维华[1] 

机构地区:[1]北京师范大学环境学院,北京100875 [2]中国21世纪议程管理中心,北京100038

出  处:《中国环境科学》2016年第6期1895-1904,共10页China Environmental Science

基  金:中国清洁发展机制基金赠款项目(2013049);国家水体污染控制与治理科技重大专项(2012ZX07102-002-05)

摘  要:以1901~2005年作为历史碳排放分配时间段,从历史代际和代内公平的角度考虑,利用全球132个国家的人口、GDP和碳排放数据,通过基尼系数优化模型对全球132个国家的历史碳排放配额进行优化分配,同时对各国未来的碳排放权做了公平分配.研究结果表明,基于GDP和人口的各国历史碳排放配额Gini系数值均低于实际的Gini系数值,并且低于0.4的警戒值,获得综合考虑各国的GDP和人口的历史碳排放配额最优分配结果.对各国的历史碳排放的赤字量和剩余量分析表明,美国是历史碳排放赤字最多的国家,印度、中国是历史碳排放剩余最多国家;同时考虑各国的历史碳排放情况得到各国未来的碳排放权,其中中国、印度等国家人口最多,经济所占全球比例也较高,在未来能获得最多的碳排放权.In this study we used the Gini coefficient optimization model to optimize the allocation of carbon emission quotas in history basing on data of population, GDP and carbon emissions from 132 countries by 1901 to 2005, taking the equity of historical intergenerational and intra-generational into account. We also allocated a equitable distribution of carbon emission permits for various countries in the future. The Gini coefficient value of carbon emission quotas in history were lower than the actual value based on GDP and population from various countries, and were below 0.4 of warning value, and obtained an optimal carbon emission quotas allocation that comprehensively considered the history of various countries’ GDP and population. The analysis of carbon emissions remaining quantity and the deficit quantity in history from various countries showed that the United States had the largest historical carbon deficit, India and China had the largest historical carbon remaining quantity. Meanwhile, considering the history of carbon emissions, the future carbon emission permits of various countries showed that China, India and other countries had the largest population, the economic proportion of the world were higher, and thus can get the most carbon emission permits in the future.

关 键 词:代际公平 碳排放权分配 碳排放配额 公平性 

分 类 号:X51[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象