机构地区:[1]中国农业科学院作物科学研究所,北京100081 [2]中国农业大学信息与电气工程学院,北京100083 [3]国土资源部土地整治中心,北京100035
出 处:《中国农业科学》2016年第11期2082-2092,共11页Scientia Agricultura Sinica
基 金:北京市耕地复合价值提升关键技术研究与应用(Z141100000614001)
摘 要:【目的】光温/气候生产潜力作为农用地分等中的重要指标之一,直接影响分等结果的准确性。从理论上来说,不同地形地区的光温条件应各不相同,以目前这种一个县一种作物只具有一个生产潜力值的情况来看,当县内地形差异明显时,仅使用一个生产潜力值不能反应出光温条件在县内的异质性,从而使分等结果不能准确描述耕地质量的差异性。论文旨在解决这一问题。【方法】从地形对于光照、温度和降水等与生产潜力密切相关的因子具有严重关联性的角度入手,通过寻找地形因子与生产潜力的关系,利用地形因子对生产潜力进行修正。由于生产潜力是以国家级尺度的数据进行计算的,为了保证修正后生产潜力值的可比性,在国家级尺度上开展修正,以900 m×900 m的DEM数据为计算地形因子的数据来源,首先利用SPSS软件,分别对坡度、坡向、海拔与生产潜力做回归分析,筛选相关性最高的回归模型,确定不同地形因子与生产潜力的相关性;其次利用回归方程、县内平均地形因子值、平均生产潜力值和待修正区的地形因子值得出生产潜力修正公式;最后以不同地形因子与生产潜力的相关系数为权重,将单因子修正后的生产潜力值进行加权,得到最终的综合修正生产潜力值。【结果】以目前农用地分等中正在使用的生产潜力值和DEM数据生成的地形因子做回归分析,其中,参与修正光温生产潜力的样点共3 779个,参与修正气候生产潜力的样点共2 765个。回归分析结果表明,坡度和坡向与光温生产潜力的相关系数分别为0.0008和0.0002,说明在国家级尺度上,以900 m×900 m的DEM数据对坡度、坡向和生产潜力进行回归分析时,这两者与生产潜力的相关性过小,故暂不列为修正生产潜力的因子;海拔与光温生产潜力的相关系数达到0.835,与气候生产潜力的相关系数达到0.721,说明海拔与生产�【Objective】 Light temperature/climate productive potentiality as one of the important index for farmland classification, which directly affects the accuracy of the classification results. In theory, light and temperature conditions should vary in different terrain regions, but existing productive potentiality value that one county, one crop just owns one value can't accurately reflect the differences of productive potentiality when the terrain differences apparent in the county, which leads to the classification results can't accurately describe the differences of the cultivated land quality. The objective of this study is to solve this problem.【Method】 Based on terrain had serious relationship with the light, temperature and precipitation which were closely related to productive potentiality, this paper proposes to find the relationship between terrain factor and productive potentiality using the relationship to correct the value of productive potentiality. As productive potentiality was calculated based on a national scale data, in order to ensure the comparability of revised productive potentiality value, this paper carried out correction in national scale and used 900 m × 900 m DEM data as data source of calculating terrain factors. Firstly, by SPSS software, regression analysis was done between altitude, gradient, aspect and productive potentiality respectively, then the highest correlation regression model was screened to reflect their relationships. Secondly, the regression equation, county average terrain values, average productive potentiality and the terrain values of correcting area were used to get correction formula for productive potentiality. Finally, the correlation coefficients of different terrain factors and productive potentiality were used as weights to weight the values of each corrected productive potentiality value by single factor to get the comprehensive correction productive potentiality value.【Result】 This paper did regression analysis using the data productive potenti
分 类 号:S162[农业科学—农业气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...