带有Hardy和Sobolev-Hardy临界指标项的扰动椭圆方程的解  被引量:1

Positive Solutions of Perturbation Elliptic Equation Involving Hardy Potential and Critical Sobolev-Hardy Exponent

在线阅读下载全文

作  者:张靖[1] 

机构地区:[1]内蒙古师范大学数学科学学院,呼和浩特010022

出  处:《数学物理学报(A辑)》2016年第3期500-506,共7页Acta Mathematica Scientia

基  金:国客自然科学基金(11571187)~~

摘  要:考虑如下带有Hardy和Sobolev-Hardy临界指标项的扰动椭圆方程这里2*(s)=(2(N-s))/(N-2)是Sobolev-Hardy临界指标,N≥3,λ∈R,0≤s<2,1<q<2*-1,0≤μ<u=((N-2)~2)/4,a(x)∈C(R^N).在|λ|足够小的情况下,应用临界点理论中的扰动方法来得到方程(0.1)正解的存在性.接下来考虑anisotropic椭圆方程b(x)∈C(R^N).在|λ|足够小的情况下,应用临界点理论中的扰动方法来得到方程(0.2)正解的存在性.In this paper, we are concerned with the following elliptic equation involving critical Sobolev-Hardy exponent {-△u-μu/|x|^2+λa(x)u^q=|u|^2*(s)^-2/|x|^su,x∈R^N,u〉0,u∈D^1,2(R^N), where 2^*(s)=(2(N-s))/(N-2) is the critical Sobolev-Hardy exponent,N≥3,λ∈R,0≤s〈2,1〈q〈2^*-1,0≤μ〈μ^-=(N-2)^2/4,a(x)∈C(R^N)We firstly use an abstract perturbation method in critical point theory to obtain the existence results of positive solutions of the equation for small value of |λ|. Secondly, we focus on an anisotropic elliptic equation of the form {-div[(1+λb(x))△u]+λa(x)u^q=μu/|x|^2+|u|^2*(s)-2/|x|^2u,x∈R^N, u〉0,u∈D^1,2(R^N), The same abstract method is used to yield existence result of positive solutions of the equation for small value of |λ|.

关 键 词:扰动方程 Sobolev-Hardy临界指标 正解 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象