含椭圆刚性核有限大复合材料层板弯曲应力分析  

Bending problem of a finite composite laminated plate with elliptical rigid inclusions

在线阅读下载全文

作  者:毛春见[1] 许希武[1] 郭树祥[1] 

机构地区:[1]南京航空航天大学机械结构力学及控制国家重点实验室,南京210016

出  处:《计算力学学报》2016年第3期393-398,共6页Chinese Journal of Computational Mechanics

基  金:国家自然科学基金(11272146);江苏高校优势学科建设工程资助项目

摘  要:基于经典的复合材料层板理论,将有限大复合材料层板等效成各向异性弹性平板。采用复变函数理论中的Faber级数分析方法,使用最小二乘边界配点法,对含多椭圆刚性核有限大各向异性板弯曲问题进行应力分析,得到了该问题的级数解形式,分析了含椭圆刚性核层板在弯曲载荷下的应力分布,并讨论了形状和结构参数对应力分布的影响。结果表明,本文方法对于分析含多个椭圆形刚性核有限大薄板弯曲应力问题非常有效,该方法具有精度高及计算方便等优点。Based on the classical composite laminate theory,a finite composite plate weakened by multiple elliptical holes is treated as an anisotropic plate. Using the Faber series method in complex theory combined with the least squares boundary collocation techniques on the finite boundaries, the bending problem of a finite composite plate weakened by elliptical rigid inclusions is studied by means of the complex variable method. As a result, concise and high accuracy solutions are presented for the stress distribution around the rigid inclusions. Finally, numerical examples are presented to discuss the effects of some parameters on the stress concentration around the rigid inclusions. The results showed that the present method is not only very efficient for analysis of the stress distribution of finite laminates with multiple elliptical rigid inclusions,but also is highly accurate and needs short computer time.

关 键 词:各向异性板 有限大板 椭圆刚性核 Faber级数 最小二乘法 

分 类 号:O343.8[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象