机构地区:[1]School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing
出 处:《Journal of Central South University》2016年第5期1015-1022,共8页中南大学学报(英文版)
基 金:Project (51134008) supported by the National Natural Science Foundation of China;Project (2012CB720401) supported by the National Basic Research Program of China
摘 要:The effect of H_2 gas content on the reduction of Panzhihua titanomagnetite concentrate pellets by carbon monoxide was investigated by isothermal reduction experiment using CO-N_2-H_2 gas mixtures in a vertical electric resistance furnace.The morphology and phase transformation of reduced samples obtained were detected by scanning electron microscopy,energy disperse spectroscopy analysis and X-ray diffractometry respectively.The results show that increasing H_2 content will enhance the initial stage of reduction rate apparently.There are two reasons responsible for this effect,one is that H_2 accelerates the chemical reaction,and the other is that the addition of H_2 gas can improve the porosity of pellet intensively.It is noteworthy that this effect is more obvious when the reduction temperature reaches 1473 K with sticking phenomenon happening.There are no crystalline phases which can be found such as ulvospinle,ilmenite,ferrous-pseudobrookite and any titanium oxide except titanomagnetite(TTM).The reduction progress is suggested as follows:1) Fe_2O_3→Fe_3O_4→FeO→Fe;2) Fe_2TiO_5→Fe_2TiO_4+Fe_3O_4→TTM.Element Al migrates and gets enriched in high titanium content iron ores,and eventually Al to Ti molar ratio is 1:3.Al is likely to dissolve in titanium iron oxides to form a kind of composite iron compound,which results in the restrain of reduction.The effect of H_2 gas content on the reduction of Panzhihua titanomagnetite concentrate pellets by carbon monoxide was investigated by isothermal reduction experiment using CO-N_2-H_2 gas mixtures in a vertical electric resistance furnace.The morphology and phase transformation of reduced samples obtained were detected by scanning electron microscopy,energy disperse spectroscopy analysis and X-ray diffractometry respectively.The results show that increasing H_2 content will enhance the initial stage of reduction rate apparently.There are two reasons responsible for this effect,one is that H_2 accelerates the chemical reaction,and the other is that the addition of H_2 gas can improve the porosity of pellet intensively.It is noteworthy that this effect is more obvious when the reduction temperature reaches 1473 K with sticking phenomenon happening.There are no crystalline phases which can be found such as ulvospinle,ilmenite,ferrous-pseudobrookite and any titanium oxide except titanomagnetite(TTM).The reduction progress is suggested as follows:1) Fe_2O_3→Fe_3O_4→FeO→Fe;2) Fe_2TiO_5→Fe_2TiO_4+Fe_3O_4→TTM.Element Al migrates and gets enriched in high titanium content iron ores,and eventually Al to Ti molar ratio is 1:3.Al is likely to dissolve in titanium iron oxides to form a kind of composite iron compound,which results in the restrain of reduction.
关 键 词:titanomagnetite pellet carbon monoxide hydrogen REDUCTION blast furnace
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...