机构地区:[1]State Key Laboratory for Hydroscience and Engineering,Tsinghua University,Beijing 100084,China [2]Tianjin Research Institute of Water Transport Engineering of Ministry of Transport,Tianjin 300456,China
出 处:《Acta Geologica Sinica(English Edition)》2016年第3期999-1010,共12页地质学报(英文版)
基 金:support from the Natural Science Foundation of China(Grant Nos.11272048,51239006 and 11572178);the Tsinghua University Initiative Scientific Research Program
摘 要:This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou's modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou's modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.
关 键 词:Newtonian and non-Newtonian flows free surface lattice Boltzmann method mass tracking algorithm
分 类 号:P642.2[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...