检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周洪毅[1]
机构地区:[1]南京理工大学自动化学院,江苏南京210094
出 处:《数字技术与应用》2016年第6期97-99,共3页Digital Technology & Application
摘 要:传统的基于LDA的字符识别需要将图像向量化,这会造成协方差矩阵维数过大和奇异问题,而基于2D-LDA的识别算法能够克服上述传统算法的缺陷。首先介绍了2D-LDA算法的原理;然后,在车牌字符数据集上测试了算法的识别率;最后,与多层感知机神经网络做了对比,表明2D-LDA算法有较高的识别率。The traditional character recognition based on LDA requires the image vectorization processing, which will bring about a too large covariance matrix dimension and singular problems, but 2D-LDA based recognition algorithm can overcome the shortcomings of the traditional algorithm described above. First, this paper introduced the principle of 2D-LDA algorithm. Then it tested the recognition rate of the algorithm on the license plate character data set. At last, it gave a comparation between 2D-LDA algorithm and MLP neural networks. The comparation indicated 2D-LDA algorithm has a higher recognition rate.
关 键 词:字符识别 2D-PCA 2D-LDA 多层感知机神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3