检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴晓[1]
机构地区:[1]湖南文理学院机械工程学院,湖南常德415000
出 处:《力学季刊》2016年第2期389-394,共6页Chinese Quarterly of Mechanics
基 金:湖南省"十二五"重点建设学科资助项目(湘教发2011[76])
摘 要:将面板PMI泡沫芯夹层梁的弯曲问题按平面应力问题研究,采用弹性理论建立了铝面板PMI泡沫芯夹层梁弯曲变形的微分方程,利用奇异函数把作用在梁上的外载荷表示为分布载荷,推导出了铝面板PMI泡沫芯夹层梁弯曲变形时的挠曲线表达式.采用该方法对面板PMI泡沫芯夹层梁弯曲挠度进行计算,将求得的计算结果与有限元法结果及实验数据进行对比,发现该方法求得的梁中点挠度更接近实验值,这说明该方法可靠的.该方法给出了铝面板PMI泡沫芯夹层梁弯曲时的挠度计算通式,而且梁中点挠度计算公式的表达形式也较为简便,可方便工程设计人员在工程实际中推广应用.In this paper, we take the bending of a sandwich beam with aluminium panels and PMI foam core as the plane stress problem, and establish the differential equations the beam bending deformation using elasticity theory. The external load on the beam is transferred into a distributed loading utilizing the singular functions, and the expression of deflection curves of the sandwich beam is derived. The given examples show that the result of our model is closer to the experimental data compared with that of the finite element method, indicating that the present method is reliable. Furthermore, the general solution of the bending of the sandwich beam with aluminium panels and PMI foam core is given with a simple formula of the center deflection. The method is convenient for the engineers to apply to practical applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222