检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083
出 处:《中南大学学报(自然科学版)》2016年第5期1675-1681,共7页Journal of Central South University:Science and Technology
基 金:科技部"十一五"科技支撑计划项目(2008BAB32B03)~~
摘 要:为了得到最佳的絮凝沉降参数,研究使用BP神经网络进行优化选择。通过对比分析,将输入因子简化为絮凝剂单耗和尾砂质量分数2个因子,输出因子简化为沉降速度1个因子;通过正交试验,建立网络学习、训练样本,优选出最佳网络模型。扩大正交试验,增加输入因子水平,组合优选样本,搜索最佳絮凝沉降参数。以司家营铁矿全尾砂絮凝沉降为例,优选出絮凝剂单耗为10 g/t,尾砂质量分数为18%,预测沉降速度为1.38 m/h,满足生产要求,比原生产所需絮凝剂单耗节省50%。应用结果表明:该研究成果效果显著,为絮凝沉降参数优选提供一种新思路。Back-Propagation neural network was occupied in order to obtain the optimization of the flocculating sedimentation parameters. By practising comparison analysis, input data were simplified as the flocculating agent consumption and tailings concentration, and the sedimentation speed as the synthesized output data. By performing the numbered orthogonal tests, some learning and training samples were established so as to get the best network mode. Then, the best parameters were acquired using the selected network by expanding the orthogonal tests, increasing the levels of the parameters, optimizing the samples and exploring the optimization of the flocculating sedimentation parameters. BP neural network mode was applied in Sijiayin Iron Mine. The results show that the flocculating agent consumption and tailings mass fraction are 10 g/t, 18% respectively, and the sedimentation speed is 1.38 m/h, which meet the production requirements and save 50% compared to the original production. The application indicates that this mode makes significant effect, providing a novel method to obtain the optimization of the flocculating sedimentation parameters.
分 类 号:TD853[矿业工程—金属矿开采]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44