检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2016年第7期1-4,10,共5页Microelectronics & Computer
基 金:国家自然科学基金项目(61306026)
摘 要:为了得到更强的鲁棒性和更好的实时性,针对精确的人眼定位提出了基于随机森林的自适应梯度提升算法(Adaptive Gradient Boosting Random Forest),同时引入了更加多样的训练样本来降低诸如光线强弱,旋转角度等外部环境对定位的影响.在BioID数据库中,此方法的准确率为92%,定位时间少于1ms.实验结果表明,它已经满足在大多数不可控环境对鲁棒性和实时性的要求.In this paper,we present an enhanced Random Forest(RF)model for precise eye localization.To extend Random Forest,we 1)propose the randomized trees with adaptive gradient boosting for a more accurate eye localization 2)introduce a series of standard samples with random perturbation for the robustness to changes in illumination and head pose and eye rotation.Performance results of our methods showed that it can obtain an accuracy of 92 percent on BioID database and gives a frame processing time of less than 1ms because of the low computation cost.Experimental results on the challenging BioID database show that our model can locate eyes accurately and efficiently under a broad range of uncontrolled variations involving lightings,camera qualities,occlusions,etc.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.211