检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新疆财经大学应用数学学院,新疆乌鲁木齐830012
出 处:《云南大学学报(自然科学版)》2016年第4期595-601,共7页Journal of Yunnan University(Natural Sciences Edition)
基 金:新疆自治区研究生科研项目基金"乌鲁木齐PM2.5浓度的动态分析研究"(XGJRI2015120)
摘 要:鉴于肺部可吸入颗粒物PM_(2.5)对人体的危害,利用多元分析及时间序列的方法将PM_(2.5)浓度变化划分为稳定部分(由分子内部的作用引起浓度变化)和不稳定部分(由外部环境因素,即温度,风力,风向及天气等)进行预测.收集乌鲁木齐7个监测站点2014年11月至2015年3月(冬季)每天的PM_(2.5),PM_(10),CO,NO_2,O_3,O_3(8 h),SO_2及天气等相关因素数据,对PM_(2.5)浓度建立预测模型并进行结果分析.相关分析表明:户外PM_(2.5)与PM_(10),CO,NO_2和SO_2具有较高的相关性.对平稳部分利用指数平滑模型预测PM_(2.5)浓度,得到最好的平滑指数是0.32.主成分回归(PCR)模型用于预测PM_(2.5)浓度的不稳定性成分,得到R2值为0.803.最终,将2015年3月至2015年5月的数据利用5种性能指标检验模型,结果表明该模型方法预测效果较好,有一定的实用价值.In this study, the concentrations of PM10, CO, NO2,03,03 ( 8 h) and SO2 concentrations have been employed to predict the concentration of PM2.5 using multivariate statistical and time series analysis methods. The data have been collected from seven monitoring stations in Urumqi(Xinjiang province, China) from November 2014 to March 2015 (winter).The bivariate correlation analysis shows that the outdoor PM2.5 concentration is highly correlated with that of PM10, CO, NO/and SO2.Further, using exponential smoothing model to predict the stability of PM2.5 concentration, the best smoothing index is O. 32. Principal component regression (PCR) has been used for modeling a prediction the instability of PM2.5 concentration and values is 0.803 for explaining instability of PM2.5 concentration.The performance indicators of models indicate that the prediction for PM2.5 an effective prediction.
分 类 号:X513[环境科学与工程—环境工程] X701.2
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117