Bifurcation analysis in a predator-prey model for the effect of delay in prey  

Bifurcation analysis in a predator-prey model for the effect of delay in prey

在线阅读下载全文

作  者:Qiubao Wang 

机构地区:[1]Department of Mathematics and Physics Shijiazhuang Tiedao University Shijiazhuang 050043, P. R. China

出  处:《International Journal of Biomathematics》2016年第4期219-237,共19页生物数学学报(英文版)

摘  要:In this paper, we study dynamics in a predator-prey model with delay, in which predator can be infected, with particular attention focused on nonresonant double Hopf bifurca- tion. By using center manifold reduction methods, we obtain the equivalent normal forms near a double Hopf critical point in this system. Moreover, bifurcations are classified in a two-dimensional parameter space near the critical point. Numerical simulations are presented to demonstrate the applicability of the theoretical results.

关 键 词:PREDATOR-PREY DELAY double Hopf bifurcation. 

分 类 号:O322[理学—一般力学与力学基础] Q141[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象