Preparation and characterization of SDC nanorods/LNC nanocomposite electrolyte  被引量:1

Preparation and characterization of SDC nanorods/LNC nanocomposite electrolyte

在线阅读下载全文

作  者:许飞 李传明 汪镇涛 叶祝鹏 张渊 曾燕伟 

机构地区:[1]State Key Laboratory of Materials-oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University

出  处:《Journal of Rare Earths》2016年第7期711-716,共6页稀土学报(英文版)

基  金:Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,P.R.China;the Program for Changjiang Scholars and Innovative Research Teams in Universities(PCSIRT,IRT_15R35)

摘  要:The nanocomposite electrolytes composed of Smo.2Ce0.801.9 (SDC) nanorods enclosed by { 110} and { 100} facets and a binary carbonate ((Lio.52Nao.48)2CO3, LNC) were prepared by a wet mixing method to investigate the conduction mechanism. The X-ray diffraction (XRD), scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques were em- ployed to characterize the phase components and microstructures of SDC nanorods and SDC nanorods/LNC composite electrolytes. X-ray powder diffraction showed that a well-cubic fluorite structure was formed. The AC impedance spectroscopy and DC polariza- tion method were used to measure the electrical conductivities of nanocomposite electrolytes under different conditions. The overall ionic conductivities of nanocomposite electrolytes in the air and hydrogen atmospheres were measured up to 82 and 96 mS/cm at 650 ℃, respectively. Additionally, the protonic and oxide ionic conductivities of nanocomposite electrolytes were found to reach 20 and 18 mS/cm at 650 ℃, respectively. The conduction mechanism was discussed in detail by comparing the conductivities of nanocom- posite electrolytes. The protonic conductivity of SDC nanorods/LNC nanocomposite was higher than oxide ionic conductivity. The melt of LNC and the interface layer may make a dominant contribution to oxide ions and protonic conductivity in air and hydrogen atmosphere, respectively.The nanocomposite electrolytes composed of Smo.2Ce0.801.9 (SDC) nanorods enclosed by { 110} and { 100} facets and a binary carbonate ((Lio.52Nao.48)2CO3, LNC) were prepared by a wet mixing method to investigate the conduction mechanism. The X-ray diffraction (XRD), scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques were em- ployed to characterize the phase components and microstructures of SDC nanorods and SDC nanorods/LNC composite electrolytes. X-ray powder diffraction showed that a well-cubic fluorite structure was formed. The AC impedance spectroscopy and DC polariza- tion method were used to measure the electrical conductivities of nanocomposite electrolytes under different conditions. The overall ionic conductivities of nanocomposite electrolytes in the air and hydrogen atmospheres were measured up to 82 and 96 mS/cm at 650 ℃, respectively. Additionally, the protonic and oxide ionic conductivities of nanocomposite electrolytes were found to reach 20 and 18 mS/cm at 650 ℃, respectively. The conduction mechanism was discussed in detail by comparing the conductivities of nanocom- posite electrolytes. The protonic conductivity of SDC nanorods/LNC nanocomposite was higher than oxide ionic conductivity. The melt of LNC and the interface layer may make a dominant contribution to oxide ions and protonic conductivity in air and hydrogen atmosphere, respectively.

关 键 词:SDC nanorods SDC/LNC nanocomposite electrolyte protonic and oxide ionic conductivities rare earths 

分 类 号:TM911.4[电气工程—电力电子与电力传动] TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象