Potassium Transporter KUP7 Is Involved in K^+ Acquisition and Translocation in Arabidopsis Root under K^+-Limited Conditions  被引量:26

Potassium Transporter KUP7 Is Involved in K^+ Acquisition and Translocation in Arabidopsis Root under K^+-Limited Conditions

在线阅读下载全文

作  者:Min Han Wei Wu Wei-Hua Wu Yi Wang 

机构地区:[1]State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China

出  处:《Molecular Plant》2016年第3期437-446,共10页分子植物(英文版)

摘  要:Potassium (K^+) is one of the essential macronutrients for plant growth and development. K^+ uptake from environment and K^+ translocation in plants are conducted by K^+ channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K^+ uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on Iow-K^+ medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K^+ uptake rate and K^+ content in xylem sap under W-deficient conditions. Thus, the K^+ content in kup7 shoot was significantly reduced under Iow-K^+ conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K^+ transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level inArabidopsis root. Together, our data demonstrated that KUP7 is crucial for K^+ uptake inArabidopsis root and might be also involved in K^+ transport into xylem sap, affecting K^+ translocation from root toward shoot, especially under K^+-Iimited conditions.Potassium (K^+) is one of the essential macronutrients for plant growth and development. K^+ uptake from environment and K^+ translocation in plants are conducted by K^+ channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K^+ uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on Iow-K^+ medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K^+ uptake rate and K^+ content in xylem sap under W-deficient conditions. Thus, the K^+ content in kup7 shoot was significantly reduced under Iow-K^+ conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K^+ transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level inArabidopsis root. Together, our data demonstrated that KUP7 is crucial for K^+ uptake inArabidopsis root and might be also involved in K^+ transport into xylem sap, affecting K^+ translocation from root toward shoot, especially under K^+-Iimited conditions.

关 键 词:Arabidopsis thaliana K^+ uptake K^+ translocation KUP7 K^+ deficiency 

分 类 号:Q73[生物学—分子生物学] Q591.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象