ASYMPTOTIC BEHAVIOR FOR GENERALIZED GINZBURG-LANDAU POPULATION EQUATION WITH STOCHASTIC PERTURBATION  

ASYMPTOTIC BEHAVIOR FOR GENERALIZED GINZBURG-LANDAU POPULATION EQUATION WITH STOCHASTIC PERTURBATION

在线阅读下载全文

作  者:Jiahe Xu Kang Zhou Qiuying Lu 

机构地区:[1]Dept.of Math.,Zhejiang Sci-Tech University

出  处:《Annals of Applied Mathematics》2016年第2期174-182,共9页应用数学年刊(英文版)

基  金:the grant of China Scholarship Council,National Natural Science Foundation of P.R.China(No.11101370,No.11302150,No.11211130093);the "521" talent program of Zhejiang Sci-Tech University(No.11430132521304);Zhejiang Provincial Natural Science Foundation(LY13A010014)

摘  要:In this paper,we are devoted to the asymptotic behavior for a nonlinear parabolic type equation of higher order with additive white noise.We focus on the Ginzburg-Landau population equation perturbed with additive noise.Firstly,we show that the stochastic Ginzburg-Landau equation with additive noise can be recast as a random dynamical system.And then,it is proved that under some growth conditions on the nonlinear term,this stochastic equation has a compact random attractor,which has a finite Hausdorff dimension.In this paper,we are devoted to the asymptotic behavior for a nonlinear parabolic type equation of higher order with additive white noise.We focus on the Ginzburg-Landau population equation perturbed with additive noise.Firstly,we show that the stochastic Ginzburg-Landau equation with additive noise can be recast as a random dynamical system.And then,it is proved that under some growth conditions on the nonlinear term,this stochastic equation has a compact random attractor,which has a finite Hausdorff dimension.

关 键 词:Ginzburg-Landau model additive white noise random attractor Hausdorff dimension 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象