检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHAN Xin ZHANG Rong
机构地区:[1]Department of Electronic Engineering and Information Science,University of Science and Technology of China [2]Key Laboratory of Electromagnetic Space Information,Chinese Academy of Sciences
出 处:《Chinese Journal of Electronics》2016年第4期686-691,共6页电子学报(英文版)
基 金:supported by the National Basic Research Program of China (973 Program)(No.2010CB731904);the National Natural Science Foundation of China(No.61172154)
摘 要:In this paper,an Entropy-constrained dictionary learning algorithm(ECDLA) is introduced for efficient compression of Synthetic aperture radar(SAR) complex images.ECDLA RI encodes the Real and imaginary parts of the images using ECDLA and sparse representation,and ECDLA AP encodes the Amplitude and phase parts respectively.When compared with the compression method based on the traditional Dictionary learning algorithm(DLA),ECDLA RI improves the Signal-to-noise ratio(SNR) up to 0.66 dB and reduces the Mean phase error(MPE) up to 0.0735 than DLA RI.With the same MPE,ECDLA AP outperforms DLA AP by up to 0.87 dB in SNR.Furthermore,the proposed method is also suitable for real-time applications.In this paper,an Entropy-constrained dictionary learning algorithm(ECDLA) is introduced for efficient compression of Synthetic aperture radar(SAR) complex images.ECDLA RI encodes the Real and imaginary parts of the images using ECDLA and sparse representation,and ECDLA AP encodes the Amplitude and phase parts respectively.When compared with the compression method based on the traditional Dictionary learning algorithm(DLA),ECDLA RI improves the Signal-to-noise ratio(SNR) up to 0.66 dB and reduces the Mean phase error(MPE) up to 0.0735 than DLA RI.With the same MPE,ECDLA AP outperforms DLA AP by up to 0.87 dB in SNR.Furthermore,the proposed method is also suitable for real-time applications.
关 键 词:Synthetic aperture radar image compression Dictionary learning Sparse representation
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169