基于Copula模型的尾部相依性长记忆效应研究  被引量:4

STUDY THE LONG MEMORY EFFECTS IN TAIL DEPENDENCE BASED ON COPULA MODELS

在线阅读下载全文

作  者:龚玉婷[1] 郑旭[2] 

机构地区:[1]上海大学悉尼工商学院,上海201800 [2]上海交通大学安泰经济与管理学院,上海200052

出  处:《系统科学与数学》2016年第6期783-799,共17页Journal of Systems Science and Mathematical Sciences

摘  要:在已有动态Copula模型基础上,提出可同时描述尾部相依性的非对称和长记忆特征的Copula模型.基于沪深股市数据,首次从尾部相依性的角度检验了沪深股市的长记忆效应.研究发现,沪深两市在重大利好或利空消息冲击时的相关性(即尾部相依性)都具有长记忆效应,极端事件对尾部相依性的影响比对未来收益和波动的影响更加持久.而且,样本外分析结果表明,相比已有Copula模型,具有长记忆性的Copula模型能更准确地预测未来1周至1年的市场间相关性.Based on existing dynamic copulas, this paper proposes a new copula model to simultaneously describe the asymmetric and long memory properties in tail dependence. Using Shanghai and Shenzhen stock exchange indices, we for the first time examine the long memory effects in stock market from the perspective of crossmarket tail dependence. It is found that both upper and lower tail dependence of the two markets exhibit long memory dynamics. The impact of extremely good or bad news on the cross-market tail dependence lasts much longer than their impact on return or volatility. Furthermore, out-of-sample results show that the new model with long memory in tail dependence has higher predicative ability in forecasting the next 1-week to 1-year cross-market dependence structure than existing copula models.

关 键 词:沪深股市 尾部相依性 长记忆效应 连接函数. 

分 类 号:F224[经济管理—国民经济] F832.51

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象