检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学悉尼工商学院,上海201800 [2]上海交通大学安泰经济与管理学院,上海200052
出 处:《系统科学与数学》2016年第6期783-799,共17页Journal of Systems Science and Mathematical Sciences
摘 要:在已有动态Copula模型基础上,提出可同时描述尾部相依性的非对称和长记忆特征的Copula模型.基于沪深股市数据,首次从尾部相依性的角度检验了沪深股市的长记忆效应.研究发现,沪深两市在重大利好或利空消息冲击时的相关性(即尾部相依性)都具有长记忆效应,极端事件对尾部相依性的影响比对未来收益和波动的影响更加持久.而且,样本外分析结果表明,相比已有Copula模型,具有长记忆性的Copula模型能更准确地预测未来1周至1年的市场间相关性.Based on existing dynamic copulas, this paper proposes a new copula model to simultaneously describe the asymmetric and long memory properties in tail dependence. Using Shanghai and Shenzhen stock exchange indices, we for the first time examine the long memory effects in stock market from the perspective of crossmarket tail dependence. It is found that both upper and lower tail dependence of the two markets exhibit long memory dynamics. The impact of extremely good or bad news on the cross-market tail dependence lasts much longer than their impact on return or volatility. Furthermore, out-of-sample results show that the new model with long memory in tail dependence has higher predicative ability in forecasting the next 1-week to 1-year cross-market dependence structure than existing copula models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200