检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡海豹[1] 王德政[1] 鲍路瑶[1] 文俊[1] 张招柱[2]
机构地区:[1]西北工业大学航海学院,西安710072 [2]中国科学院兰州化学物理研究所,固体润滑国家重点实验室,兰州730000
出 处:《物理学报》2016年第13期195-201,共7页Acta Physica Sinica
基 金:国家自然科学基金重点项目(批准号:51335010,51109178);中央高校基本科研业务费专项资金项目(批准号:3102015ZY017);西北工业大学研究生创意创新种子基金(批准号:Z2016055)资助的课题~~
摘 要:超疏水表面水下减阻效果通常与其微结构上封存气膜的厚度和面积正相关,且气膜尺寸越大封存越困难.构造亲疏水相间表面,能在壁面形成润湿阶跃,产生约束固-气-液三相接触线移动的束缚力.通过监测切向水流作用下,润湿阶跃为54.8?,84.7?,103.6?和144.0?的亲疏水相间表面上不同面积和厚度气膜的形态发现,厘米尺度气膜可被长时间稳定封存,且气膜破坏的临界流速随润湿阶跃和气膜厚度的增加而升高,随气膜迎流宽度增加而降低.同时,该方法封存的气膜上能产生显著滑移量,尺寸0.6 cm×0.5 cm×0.15 cm的气膜上即可产生约占主流速度25%的稳定滑移速度.期待该气膜封存方法能进一步提升超疏水表面水下减阻技术性能.Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8?, 84.7?, 103.6?and 144.0?in apparent contact angle, respectively,the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.87.133