多方法对比分析及随钻声波测井曲线的预测  被引量:6

Forecasting LWD acoustic logs based on comparison and analysis of multi-method

在线阅读下载全文

作  者:李雄炎 秦瑞宝 刘小梅 平海涛 

机构地区:[1]中海油研究总院,北京100028

出  处:《地球物理学进展》2016年第3期1131-1138,共8页Progress in Geophysics

摘  要:声波测井曲线是井震联合反演过程中必不可少的资料.在没有声波测井资料的情况下,必须对其进行预测.X油田大部分开发井均没有实测的纵、横波测井资料,这给该油田剩余油的挖潜工作带来较大困难.文章基于聚类分析算法、岩石物理模型和多元线性拟合三种方法,开展了纵波测井曲线的预测,以模型的稳定性、精确度、实用性作为衡量指标,选用多元线性拟合方法预测纵波测井曲线,其预测模型的相对误差约为3.18%.在准确预测纵波测井曲线的基础之上,采用Han公式、Greengerg-Castagna(GC)公式和Xu-White模型预测横波测井曲线,其中基于GC公式所建立的预测模型精度最高,其相对误差约为4.36%,从而选取GC公式来预测横波测井曲线.纵、横波测井曲线的准确预测为X油田剩余油分布预测及井位优化研究工作奠定了坚实的基础,具有较强的现实意义.The acoustic logs are essential in the process of seismic inversion. If there are not acoustic logs,they should be forecasted.In X oil field,most development wells have not compression and shear waves logging. Therefore,it is very difficult for looking for the remaining oil. On the basis of three methods including cluster analysis algorithms,petrophysical models and multilinear fitting,the compression wave logging is forecasted. The measurable indicators include the stability, accuracy and practicability of forecasting models. As a result,the multilinear fitting is used to forecast the compression wave logging. The relative error of forecasting model built the multilinear fitting is about 3. 18%.Then,the Han formula,Greengerg-Castagna( GC) formula and XuWhite model are applied to forecasting the shear wave logging.Based on the GC formula,the accuracy of forecasting model is highest and its relative error is about 4. 36%. At last,the GC formula is used to forecast the shear wave logging. It laid a solid foundation that the accurate forecast of compression and shear waves logging for the distribution prediction of remaining oil and the optimization of well location. In addition, it also has a strong practical significance.

关 键 词:声波曲线 曲线预测 预测模型 对比分析 油气评价 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象