Parachute dynamics and perturbation analysis of precision airdrop system  被引量:9

Parachute dynamics and perturbation analysis of precision airdrop system

在线阅读下载全文

作  者:Gao Xinglong Zhang Qingbin Tang Qiangang 

机构地区:[1]College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

出  处:《Chinese Journal of Aeronautics》2016年第3期596-607,共12页中国航空学报(英文版)

基  金:co-supported by Research Project of Chinese National University of Defense Technology(No.:JC13-0104);the National Natural Science Foundation of China(Nos.:51375486 and 11272345);the found support from China Scholarship Council(CSC)

摘  要:To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comprehensively predicted by numerical methods. The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian Euler (ALE) penalty coupling method. With the available aerodynamic data obtained from the FSI sim- ulation, a nine-degree-of-freedom (9DOF) dynamic model of a parachute-payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system. Finally, a linear five-degree-of-freedom (5DOF) dynamic model is developed, the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data. The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comprehensively predicted by numerical methods. The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian Euler (ALE) penalty coupling method. With the available aerodynamic data obtained from the FSI sim- ulation, a nine-degree-of-freedom (9DOF) dynamic model of a parachute-payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system. Finally, a linear five-degree-of-freedom (5DOF) dynamic model is developed, the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data. The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.

关 键 词:Airdrop system Flight dynamics Fluid structure interaction PARACHUTE Perturbation analysis 

分 类 号:V244.216[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象