Remediation of saline–sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China  被引量:14

Remediation of saline–sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China

在线阅读下载全文

作  者:Yumei Mao Xiaping Li Warren A.Dick Liming Chen 

机构地区:[1]East China Normal University,Shanghai 200062,China [2]The Ohio State University,The Ohio Agricultural Research and Development Center,Wooster,OH 44691,USA

出  处:《Journal of Environmental Sciences》2016年第7期224-232,共9页环境科学学报(英文版)

基  金:supported by the National Public Project of Environmental Protection(No.201109023);the Shanghai Agricultural Committee(No.2012-2-1)

摘  要:Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3^-+ CO_3^(2-)and Cl-to neutral salt ions mainly containing Ca^(2+)and SO_4^(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3^-+ CO_3^(2-)and Cl-to neutral salt ions mainly containing Ca^(2+)and SO_4^(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.

关 键 词:FGD-gypsum Saline–sodic soil Tidal flat ESP Composition of soluble salt 

分 类 号:S156.4[农业科学—土壤学] TQ177.36[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象