检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京林业大学南方现代林业协同创新中心,江苏南京210037
出 处:《遥感学报》2016年第4期665-678,共14页NATIONAL REMOTE SENSING BULLETIN
基 金:江苏省自然科学基金(编号:BK20151515);江苏省高校自然科学研究项目(编号:14KJB220002);江苏高校优势学科建设工程资助项目(PAPD)~~
摘 要:以亚热带天然次生林为研究对象,借助一个条带的少量LiDAR点云数据和覆盖整个研究区的免费Landsat OLI多光谱数据,并结合地面实测数据,探索森林生物量低成本高精度制图方法。首先,提取了OLI和LiDAR特征变量,并与地上和地下生物量进行相关分析以筛选变量;然后,借助LiDAR数据覆盖区的样地和条带LiDAR数据构建"LiDAR生物量模型";再从LiDAR反演生物量的结果中进行采样,结合OLI特征变量构建"LiDAR-OLI模型";最后,与单独使用OLI多光谱数据建立的"OLI估算模型"结果进行比较,分析精度并验证新方法的效果。结果表明,"LiDAR-OLI模型"对地上和地下生物量的模型拟合效果较好且均优于"OLI模型",且其交叉验证的精度也较高并优于"OLI模型",从而证明了新方法的可靠性及有效性。本研究为主、被动遥感技术在中小尺度上协同反演森林参数提供了实验基础,也为基于全覆盖免费OLI多光谱数据及条带LiDAR数据的低成本森林生物量制图探索了技术路线。Accurate estimation of forest biomass is critical for modeling the carbon cycle and mitigating climate changes. Integration of multi-spectral satellite data and airborne LiDAR data can accurately estimate the biomass. However, the application of this strategy is lim-ited in subtropical forests, particularly in China. In this study, a novelapproach was assessed using one strip of LiDAR point cloud and "wall- to-wall" Landsat OLI free multi-spectral data combined with field-measured plot data to generate a low-cost and high-accuracy forest bio- mass map in a subtropical secondary forest in southeast China. Sixty square plots (30 m×30 m) were established across the study site. First, the OLI data were processed by atmospheric and geometric correction, and LiDAR point clouds were extracted from the raw full-waveform LiDAR data. Second, fivesets of OLI and three sets of LiDAR metrics were extracted, and correlation analysis was performed with the field estimates of above- and below-ground biomass foroptimal metrics selection. Third, the "LiDAR biomass model" was fitted to LiDAR met- rics extracted from the strip of LiDAR point cloud and the field plots within the strip. The "LiDAR-OLI biomass model" was fitted tothe OLI metrics and forest biomass estimated by the LiDAR data. Finally, the performance of the predictive models and the accuracy of the cross-validation results were evaluated through comparison with the accuracy assessment results of the "OLI biomass model." [Result] The "LiDAR-OLI biomass model" (R2 of above- and below-ground biomass estimation=0.69 and 0.56, respectively) exhibited improved per- forrnance than the "OLI biomass model" (Rz of above- and below-ground biomass estimation=0.69 and 0.56, respectively). The relative bi- ases of above- and below-ground biomass estimation increased by 14% and 15%, respectively. The mean differences in the cross-validation results for the "LiDAR-OLI biomass model" (mean differences in above- and below-ground biomass estimat
关 键 词:升尺度 生物量反演 亚热带森林 机载LiDAR数据 LANDSAT 8 OLI影像 多元回归模型
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28