检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:臧琳 宋冬梅[1] 甘宇亮[3] 单新建 崔建勇[1] 邵红梅[5] 沈晨
机构地区:[1]中国石油大学(华东)地球科学与技术学院,山东青岛266580 [2]中国石油大学(华东)研究生院,山东青岛266580 [3]青岛市勘察测绘研究院,山东青岛266032 [4]中国地震局地质研究所,北京100029 [5]中国石油大学(华东)理学院,山东青岛266580
出 处:《测绘科学》2016年第7期11-17,共7页Science of Surveying and Mapping
基 金:地震动力学国家重点实验室开放基金资助项目(LED2012B02)
摘 要:针对当前基于被动微波遥感重建地表温度的统计方法难以实现大面积复杂下垫面区域数值重建的问题,提出了基于统计模型与滤波算法联合的地表温度重建方法。从时间序列角度探索地表温度与地表亮温的相关性,建立二者之间的统计模型,不需要进行地物分类,能有效避免下垫面复杂度对重建精度的影响;遍历像元,实现对大面积区域的数值重建。此外,采用滤波算法对基于统计模型的结果进行改正,利用地表温度时间序列的周期性进一步控制反演误差。针对MODIS地表温度产品重建的实验结果表明:所提算法精度明显提高,可用于各类下垫面覆盖区域的地表温度重建。In view of the problem that the exist statistical methods of land surface temperature recon- struction based on passive microwave remote sensing are hard to achieve temperature values reconstruction in large-scale area with complex underlying surface, a land surface temperature reconstruction method based on statistical model and filtering algorithm was proposed. The correlation of land surface temperature and brightness temperature was explored from time series to establish the statistical model between them without ground cover classification, which effectively avoided the influence of underlying surface complex- ity on the reconstruction accuracy. The temperature values of large-scale area were reconstructed through traversing pixels. In addi[tion, the inversion error was controlled by using filter algorithm based on the pe- riodicity of land surface temperature time series to correct the results of statistical model. The results of MODIS land surface temperature reconstruction showed that the inversion accuracy was significantly im- proved, and this method could be used for all kinds of underlying surface.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15