检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军陆军军官学院十一系,合肥230031
出 处:《模式识别与人工智能》2016年第7期577-589,共13页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61273296)资助~~
摘 要:在光滑问题随机方法中使用减小方差策略,能够有效改善算法的收敛效果.文中同时引用加权平均和减小方差的思想,求解"L1+L2+Hinge"非光滑强凸优化问题,得到减小方差加权随机算法(α-HRMDVR-W).在每步迭代过程中使用减小方差策略,并且以加权平均的方式输出,证明其具有最优收敛速率,并且该收敛速率不依赖样本数目.与已有减小方差方法相比,α-HRMDVR-W每次迭代中只使用部分样本代替全部样本修正梯度.实验表明α-HRMDVR-W在减小方差的同时也节省CPU时间.Using the strategy of reducing the variance in smooth stochastic method can effectively improve the convergence of the algorithm. An algorithm, hybrid regularized mirror descent with reduced variance and weighted average (α-HRMDVR-W), is obtained by using weighted average and reduced variance for solving "L1 + L2 + Hinge" non-smooth strong convex optimization problem. The variance reduction strategies are utilized at each step of the iterative process, and the weighted average of the output mode is used. It is proved that the α-HRMDVR-W has optimal convergence rate and the convergence rate does not depend on the number of samples. Unlike the existing variance reduction methods, α-HRMDVR-W only uses a small portion of samples instead of the total samples to modify the gradient at each iteration. Experimental results show that α-HRMDVR-W reduces the variance and decreases CPU time.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222