机构地区:[1]中国气象科学研究院,北京100081 [2]东北师范大学环境学院/自然灾害研究所,长春130024 [3]江苏省气象局,南京210008
出 处:《中国农业科学》2016年第13期2469-2483,共15页Scientia Agricultura Sinica
基 金:国家"十二五"科技支撑计划(2011BAD32B00)
摘 要:【目的】针对长江中下游地区双季早稻生长过程中的冷害、热害发生情况,对种植区进行综合风险评价和区划,以期科学指导长江中下游地区双季早稻生产。【方法】利用长江中下游双季早稻种植区1961—2012年气象资料、1981—2010年农业气象资料及气象灾害和社会统计资料,以发育期为时间尺度,为早稻生长季综合灾害发生情况构建危险性评价模型,为承灾体的脆弱性构建脆弱性评价模型,为承灾体的暴露性构建暴露性评价模型,为社会防灾减灾能力构建防灾减灾评价模型。依据灾害风险形成机制,采用自然灾害风险指数方法结合上述4要素构建综合灾害风险评价模型并对种植区进行风险区划。【结果】用灾害指标值、发育期权重系数、灾种权重系数构建各发育期危险性评价模型,结果表明湖南南部和江西东南部危险度很低,冷害和热害都很少发生,是优良的双季早稻种植区。湖南、江西腹地危险度在0.3左右,是由于灌浆期热害较强导致危险度略高。湖北地区危险度东高西低,种植条件略差,其中阳新和蕲春分别受分蘖期冷害和孕穗期冷害的严重影响,危险度较高。浙江除分蘖期危险度低之外,其他各发育期的危险度都比其他省高,特别是灌浆期高温热害严重影响早稻产量,是双季早稻种植的高危险度区。以产量变异程度作为评价指标构建脆弱性评价模型,结果表明浙江中东部、江西中南部、湖北种植区脆弱度较低,湖南宁乡、茶陵等地脆弱度较高,江西北部脆弱度最高,灾害性天气发生的年份当地产量波动较大。以植被覆盖度为评价指标构建暴露性评价模型,结果表明湖南中东部和江西地区暴露度最高,双季早稻种植面积占耕地面积最高达85%,而浙江和湖北双季早稻种植区暴露度较低。以农业机械总动力、农民人均纯收入和化肥施用量作为指标构建防灾减灾能�[ Objective ] Agricultural meteorological disasters are the important factors which threaten the national food security. Risk assessment on agro-meteorological disasters is the main research direction of guaranteeing agricultural production. There is the largest double-cropping early rice (DCER) planting area in Yangtze River basin in China, the DCER output in this area accounts for more than half of the country's total production. This region is located in central China, where the hydrothermal resources are relatively abundant, but the seasonal distribution is uneven. Temperature swings in spring and hot days emerge frequently in summer, causing DCER's cold and hot damages and affecting final yield. Therefore, it is emergency to carry out risk assessment of cold and hot damages of DCER. [Method] The research was based on the meteorological data during 1961-2012, agricultural meteorological data during 1981-2010 and social statistics data of DCER growing region in lower-middle reaches of the Yangtze River Basin. First and foremost, four assessment models were built to evaluate cold and hot damage hazard, environmental vulnerability, exposure, disaster prevention and mitigation capacity. For laying a foundation for the formation mechanism of natural disaster risk, a risk evaluation model was developed in terms of hazard which is fine depicted in development phrase, vulnerability, exposure and disaster prevention and mitigation capacity. Weight coefficients of the four factors are calculated by entropy weight evaluation method. The results of the multi-risk assessment model is valuable for decision making to release disaster risks. [ Result ] The hazard assessment model was constructed based on disaster intensities at various developmental stages, the weight coefficient of the development stage and the weight coefficient of cold and hot damages. The assessment results show that the planting area in southern Hunan and southeastern Jiangxi is suitable for DCER, where cold and hot damages are rarely happened.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...