Speech emotion recognition via discriminant-cascading dimensionality reduction  被引量:1

基于级联降维判别的语言情感识别(英文)

在线阅读下载全文

作  者:王如刚[1,2] 徐新洲[1] 黄程韦[1] 吴尘[1] 张昕然[1] 赵力[1] 

机构地区:[1]东南大学水声信号处理教育部重点实验室,南京210096 [2]盐城工学院信息工程学院,盐城224051

出  处:《Journal of Southeast University(English Edition)》2016年第2期151-157,共7页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.61231002,61273266);the Ph.D.Program Foundation of Ministry of Education of China(No.20110092130004);China Postdoctoral Science Foundation(No.2015M571637)

摘  要:In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projections and graph embedding framework, a novel discriminant-cascading dimensionality reduction method is proposed, which is named discriminant-cascading locality preserving projections (DCLPP). The proposed method specifically utilizes supervised embedding graphs and it keeps the original space for the inner products of samples to maintain enough information for speech emotion recognition. Then, the kernel DCLPP (KDCLPP) is also proposed to extend the mapping form. Validated by the experiments on the corpus of EMO-DB and eNTERFACE'05, the proposed method can clearly outperform the existing common dimensionality reduction methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projections (LPP), local discriminant embedding (LDE), graph-based Fisher analysis (GbFA) and so on, with different categories of classifiers.为了准确地识别语音情感信息,研究了语音情感识别的降维中判别级联效应.基于现有的局部投影算法和图形嵌入理论,提出了一种新型判别分析算法,即DCLPP算法.为了能够对语音情感识别保持足够的信息,该算法利用嵌入图形为样本的内部特点保留了原始空间.然后,为了扩展映射形式,提出了一种kernel dCLPP(KDCLPP)的方法.在EM O-DB和eNTERFACE'05情感语音数据库上对该算法进行了验证,结果表明,所提算法可明显地超越现有的常用主成成分分析(PCA)、线性判别分析(LDA)、局部保持投影(LPP)、局部鉴别嵌入(LDE)和图优化的Fisher判别分析(Gb FA)等判别分析算法,这些算法都有不同类型的分类器.

关 键 词:speech emotion recognition discriminant-cascading locality preserving projections DISCRIMINANTANALYSIS dimensionality reduction 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象