Numerical studies of the hysteresis in locomotion of a passively pitching foil  被引量:3

Numerical studies of the hysteresis in locomotion of a passively pitching foil

在线阅读下载全文

作  者:邵雪明 张晓龙 余钊圣 

机构地区:[1]State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanics, Zhejiang University

出  处:《Journal of Hydrodynamics》2016年第3期359-368,共10页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foun-dation of China(Grant No.11372275);the Program for New Century Excellent Talents in University

摘  要:The direct-forcing fictitious domain method is extended to simulate the locomotion of a passively pitching foil. Our study focuses on the hysteresis phenomenon that the critical frequency for the reverse of the locomotion direction of the wing in case of decreasing frequency is smaller than that in case of increasing frequency. In our simulations, the hysteresis phenomenon is produced by imposing different initial conditions at a same frequency. Our results indicate that the ratio of the heaving amplitudes of two foil edges is crucial to the direction of the foil's horizontal motion, and the amplitude of the leading edge is generally smaller. The critical frequencies for the reverse of the locomotion direction are increased, when the foil-fluid density ratio is decreased or the spring constant is increased. The critical frequencies in the bi-stability regime also depend on the initial velocity imposed, and the hysteresis loop generally becomes larger if the initial velocities are closer to the terminal locomotion velocities of the foil.The direct-forcing fictitious domain method is extended to simulate the locomotion of a passively pitching foil. Our study focuses on the hysteresis phenomenon that the critical frequency for the reverse of the locomotion direction of the wing in case of decreasing frequency is smaller than that in case of increasing frequency. In our simulations, the hysteresis phenomenon is produced by imposing different initial conditions at a same frequency. Our results indicate that the ratio of the heaving amplitudes of two foil edges is crucial to the direction of the foil's horizontal motion, and the amplitude of the leading edge is generally smaller. The critical frequencies for the reverse of the locomotion direction are increased, when the foil-fluid density ratio is decreased or the spring constant is increased. The critical frequencies in the bi-stability regime also depend on the initial velocity imposed, and the hysteresis loop generally becomes larger if the initial velocities are closer to the terminal locomotion velocities of the foil.

关 键 词:flapping foil passively pitching HYSTERESIS fictitious domain method 

分 类 号:O311[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象