检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乐阳阳[1,2] 张兴宇[1,2] 杨波[1,2] 陆蓉儿 洪煦昊 张超[1,2] 秦亦强[1,2] 朱永元[1,3]
机构地区:[1]南京大学固体微结构物理国家重点实验室人工微结构科学与技术协同创新中心近代声学教育部重点实验室,南京210093 [2]南京大学现代工程与应用科学学院,南京210093 [3]南京大学物理学院,南京210093
出 处:《物理学报》2016年第14期110-114,共5页Acta Physica Sinica
基 金:国家自然科学基金(批准号:11274163;11274164;11374150;11504166)资助的课题~~
摘 要:本文从理论角度提出了一种"含时贝塞尔光束"的概念.在非傍轴和非时谐条件下,直接从麦克斯韦方程出发,借鉴半贝塞尔光束的处理方法,同时引入第四维虚数坐标,由此获得了完整的"含时贝塞尔光束"的解析表达式.并从无衍射性质和时空特性两个方面对其进行了探讨和研究,发现该光束具有如下性质:符合贝塞尔光束类型的无衍射特征;在时空双曲线上强度保持不变;光波时空特性的临界条件类似于相对论中的光锥."含时贝塞尔光束"的概念为无衍射自加速光束的研究开拓了新的思路和方向.Non-diffracting beams have been a hot topic since the Airy wave packet was introduced to optics domain from quantum mechanics. Great efforts have been made to study this theme in recent years. The researches have ranged from paraxial regime to non-paraxial regime, and a series of new non-diffracting beams have been discovered. However,most of these beams are obtained under the time harmonic condition. To break this limitation, we propose a concept of time-dependent Bessel beam in this paper, which generalizes the non-diffracting beams to non-time-harmonic regime.We start from Maxwell's equations in vacuum under non-paraxial condition using the method borrowed from the half-Bessel beam. To obtain the non-time-harmonic solution, the fourth dimensional imaginary coordinate is introduced,which refers to the covariance in the theory of special relativity. By solving the wave equation without the time harmonic condition, we obtain the analytical expression for a time-dependent beam in the form of Bessel functions. Thus we call it time-dependent Bessel beam.The diffraction properties and space-time characteristics of the time-dependent Bessel beam are investigated theoretically. The transverse intensity and the intensity distribution of the beam are calculated and discussed in detail.The wave function of the time-dependent Bessel beam is in the same form as the normal Bessel beam so that it can exhibit non-diffraction in the four dimensional space-time. When propagating along a space-time hyperbolic trajectory,the intensity of the time-dependent Bessel beam remains constant and the width of the beam decreases with propagating distance and time increasing. Besides, we deduce the critical condition of the spatiotemporal characteristics of the beam,and the result agrees well with the concept of the light cone in the theory of special relativity.The method to deduce the time-dependent Bessel beam used in this paper is universal, and it will provide a valuable access to other solutions for the wave equations under differen
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.190.254