交通事故时间序列预测模型研究  被引量:21

Study on method for prediction of traffic accident time series

在线阅读下载全文

作  者:王文博[1,2] 陈红[1] 韦凌翔[3] 

机构地区:[1]长安大学公路学院,陕西西安710064 [2]中交第一公路勘察设计研究院有限公司,陕西西安710075 [3]盐城工学院材料工程学院,江苏盐城224051

出  处:《中国安全科学学报》2016年第6期52-56,共5页China Safety Science Journal

基  金:国家科技支撑计划课题(2014BAG05B01)

摘  要:为提升交通事故时间序列预测精度,建立一个基于相关向量机(RVM)的交通事故时序序列预测模型。结合RVM的建模与求解思想,建立交通事故时间序列预测函数关系式;设计交通时序参数预测模型实现流程,并选取均方根误差(RMSE)、模型训练时间等作为评价指标;以我国交通事故数、万车死亡率、10万人口死亡率为例,验证所建模型的有效性。实例验证表明:所建模型对不同的交通事故时间序列指标预测效果良好,预测精度高于灰色预测、自回归移动平均模型、支持向量机(SVM)等经典模型。A model was built for enhancing accuracy of traffic accident time series prediction based on the RVM model.Firstly, a prediction function of traffic accident time series was established on the basis of the thinking of RVM about modelling and solving. Secondly, steps of prediction method of traffic accident time series were designed, and root-mean-square error(RMSE) as well as model training time were taken as evaluating indicators. Finally, the effectiveness of the prediction method was confirmed by the data on traffic accidents, traffic accident fatalities of per 1 000 cars, traffic accident fatalities of per 100 000 people in China in a period of som 60 years. Results indicate that the prediction method has a good prediction effect in traffic accidenttime series, and its forecast accuracy is higher than those of grey prediction, autoregressive moving average model, support vector machine(SVM) or other classical forecasting models.

关 键 词:交通事故 时间序列 相关向量机(RVM) 交通运输工程 人工智能 

分 类 号:X928.03[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象