分析动力学中的基本方程与非完整约束  被引量:7

The Fundamental Equations in Analytical Mechanics for Nonholonomic Systems

在线阅读下载全文

作  者:刘才山[1] 

机构地区:[1]北京大学工学院,北京100871

出  处:《北京大学学报(自然科学版)》2016年第4期756-766,共11页Acta Scientiarum Naturalium Universitatis Pekinensis

基  金:国家自然科学基金(11132001;11472011)资助

摘  要:对于受约束的系统,分析动力学主要基于d’Almbert-Lagrange原理、Gauss原理、Jourdian原理和Hamilton原理等,利用虚位移限制方程,建立包含乘子的动力学基本方程,或利用约束嵌入的方式,降低系统动力学方程的维数。作者系统回顾分析动力学发展历程,对一些基本概念,如虚位移、理想约束、Lagrange乘子与约束力之间的关系等,给出诠释。Analytical mechanics is established based on d'Almbert-Lagrange Principle, Gauss principle, Jourdian principle and Hamilton principle, to deal with the dynamics of mechanical systems subject to holonomic or nonholonomic constraints. The governing equation of the systems are derived either by introducing Lagrange's multipliers to adjoin with the limitation equations for the virtual displacements, or by directly eliminating the constraint equations to achieve minimal formulations. The author presents a survey for the history of analytical mechanics, and explains some basic concepts, such as virtual displacement, ideal constraint, and the correlations between the Lagrange multipliers and the real constraint forces.

关 键 词:非完整约束 力学基本原理 虚位移 理想约束 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象