Study of M-estimator Variational Retrieval Using Simulated Feng Yun-3A Data  

Study of M-estimator Variational Retrieval Using Simulated Feng Yun-3A Data

在线阅读下载全文

作  者:Wang Gen Wen Huayang Qiu Kangjun Xie Wei 

机构地区:[1]Anhui Meteorological Information Centre [2]School of Atmospheric Sciences,Nanjing University

出  处:《Meteorological and Environmental Research》2016年第3期1-6,共6页气象与环境研究(英文版)

基  金:Supported by Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GYHY201406028);Meteorological Open Research Fund for Huaihe River Basin(HRM201407);Anhui Meteorological Bureau Science and Technology Development Fund(RC201506)

摘  要:This paper adopts satellite channel brightness temperature simulation to study M-estimator variational retrieval. This approach combines both the advantages of classical variational inversion and robust M-estimators. Classical variational inversion depends on prior quality control to elim- inate outliers, and its errors follow a Gaussian distribution. We coupled the M-estimators to the framework of classical variational inversion to obtain a M-estimator variational inversion. The cost function contains the M-estimator to guarantee the robustness to outliers and improve the retrieval re- sults. The experimental evaluation adopts Feng Yun-3A (FY-3A) simulated data to add to the Gaussian and Non-Gaussian error. The variational in- version is used to obtain the inversion brightness temperature, and temperature and humidity data are used for validation. The preliminary results demonstrate the potential of M-estimator variational retrieval.This paper adopts satellite channel brightness temperature simulation to study M-estimator variational retrieval. This approach combines both the advantages of classical variational inversion and robust M-estimators. Classical variational inversion depends on prior quality control to elim- inate outliers, and its errors follow a Gaussian distribution. We coupled the M-estimators to the framework of classical variational inversion to obtain a M-estimator variational inversion. The cost function contains the M-estimator to guarantee the robustness to outliers and improve the retrieval re- sults. The experimental evaluation adopts Feng Yun-3A (FY-3A) simulated data to add to the Gaussian and Non-Gaussian error. The variational in- version is used to obtain the inversion brightness temperature, and temperature and humidity data are used for validation. The preliminary results demonstrate the potential of M-estimator variational retrieval.

关 键 词:Non-Gaussian M-ESTIMATOR Variational retrieval Re-estimated contribution rate FY-3A simulated data 

分 类 号:P412.27[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象