Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China  被引量:9

Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China

在线阅读下载全文

作  者:YU HaiYan WANG RuCheng GUO JiChun LI JiaGui YANG XiaoWen 

机构地区:[1]State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China [2]College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, China [3]Center for Jewelry Research, Nanjing University, Nanjing 210093, China [4]Jewelry Inspection Station, Nanjing University, Nanjing 210093, China [5]Station of Precious Metal Gemstone Quality Control and Inspection, Qinghai Province, Xi'ning 810008, China

出  处:《Science China Earth Sciences》2016年第8期1597-1609,共13页中国科学(地球科学英文版)

摘  要:Electronic microprobe analysis showed that all QN samples are mainly composed of tremolite and minor accessory minerals, such as diopside, calcite, serpentinite, and magnetite. According to the cation coefficients, the crystallo-chemistrygenesis illustration demonstrates that all QN deposits are contact metasomatic. Depending on the mole percent of Fe^(2+(3+))/(Mg^(2+)+Fe^(2+(3+)) and the content of Cr, Co, and Ni in all QN samples measured by X-ray fluorescence spectroscopy(XRF) and inductively coupled plasma-mass spectrometry(ICP-MS), green and azure-green QNs are characterized as serpentinite-related contact metasomatic deposit(S-type), whereas white, green-white, brown, blue-violet, yellow, and viridis QNs are dolomite-related contact metasomatic deposit(D-type). The assemblages and chemical composition of accessory minerals of the eight-color QN samples show evident characteristics, which reveal four possible ore-forming processes. We also measured trace and rare earth elements(REEs) in these samples through ICP-MS to deduce the origin of and the changes in metallogenic conditions. The chondrite-normalized REE patterns of D-type QN exhibit moderately negative Eu anomalies with moderate light REE enrichment, flat heavy REE(HREE), and low(50)REE concentrations, similar to dolomitic marble. Green QN samples of S-type show enrichment in HREE and moderately negative Eu anomalies, which is consistent with characteristics of dunite. Whereas azure-green QN samples of S-type exhibit a right-dipping V-type curve with severe depletion in Eu(δEu=0.36–0.47), in accordance with the characteristics of gabbro from Yushigou ophiolite in North Qilian mountains. Furthermore, this finding is consistent with the content of trace elements and the petrographic analysis results. On the basis of several significant differences in the characteristic elements, which may have been affected by the metallogenic environment, we inferred the differences in oxygen fugacity and basicity of mineralization environments in different-colored Electronic microprobe analysis showed that all QN samples are mainly composed of tremolite and minor accessory minerals, such as diopside, calcite, serpentinite, and magnetite. According to the cation coefficients, the crystallo-chemistrygenesis illustration demonstrates that all QN deposits are contact metasomatic. Depending on the mole percent of Fe2+(3+)/(Mg2++Fe2+(3+) and the content of Cr, Co, and Ni in all QN samples measured by X-ray fluorescence spectroscopy(XRF) and inductively coupled plasma-mass spectrometry(ICP-MS), green and azure-green QNs are characterized as serpentinite-related contact metasomatic deposit(S-type), whereas white, green-white, brown, blue-violet, yellow, and viridis QNs are dolomite-related contact metasomatic deposit(D-type). The assemblages and chemical composition of accessory minerals of the eight-color QN samples show evident characteristics, which reveal four possible ore-forming processes. We also measured trace and rare earth elements(REEs) in these samples through ICP-MS to deduce the origin of and the changes in metallogenic conditions. The chondrite-normalized REE patterns of D-type QN exhibit moderately negative Eu anomalies with moderate light REE enrichment, flat heavy REE(HREE), and low(50)REE concentrations, similar to dolomitic marble. Green QN samples of S-type show enrichment in HREE and moderately negative Eu anomalies, which is consistent with characteristics of dunite. Whereas azure-green QN samples of S-type exhibit a right-dipping V-type curve with severe depletion in Eu(δEu=0.36–0.47), in accordance with the characteristics of gabbro from Yushigou ophiolite in North Qilian mountains. Furthermore, this finding is consistent with the content of trace elements and the petrographic analysis results. On the basis of several significant differences in the characteristic elements, which may have been affected by the metallogenic environment, we inferred the differences in oxygen fugacity and basicity of mine

关 键 词:QINGHAI NEPHRITE TREMOLITE Type Process ORIGIN ENVIRONMENT 

分 类 号:P619.28[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象