机构地区:[1]State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]Department of Colorectal and Anal Surgery,China-Japan Union Hospital Jilin University,Changchun 130033,China
出 处:《Chinese Journal of Polymer Science》2016年第9期1079-1090,共12页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(No.21274145)
摘 要:The hybrid structures of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer and inorganic nanoparticles with good stability and biocompatibility have potential applications in drug delivery and bioimaging. Spherical co-assemblies of PS120-b-PEO318 and oleylamine-capped CdS quantum dots (QDs) are produced successfully in this work by adding water to a mixed common solvent, such as N,N-dimethylmethanamide (DMF)/chloroform, DMF/tetrahydrofuran (THF), or DMF/toluene. The energy dispersive X-ray (EDX) spectrum indicates that QDs are located at the interface between the core and shell of the spherical co-assemblies. The co-assembly process during water addition is traced by transmission electron microscopy (TEM) and turbidity measurement. Spherical co-assemblies are formed through budding from bilayers of the block copolymer and QDs. The morphology of the co-assemblies is related to the miscibility of the QD-dispersing solvents with water and the morphology changes from a spherical to a vesicle-like structure with DMF/toluene. Increasing THF content in the mixed solvent causes morphological transitions from spherical co-assemblies to multi-branched cylinders and micelles where QDs are located in the central core. Increasing chloroform content yields vesicle-like structures with protruding rods on the surface. The mechanism of the morphological transitions is also discussed in detail.The hybrid structures of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer and inorganic nanoparticles with good stability and biocompatibility have potential applications in drug delivery and bioimaging. Spherical co-assemblies of PS120-b-PEO318 and oleylamine-capped CdS quantum dots (QDs) are produced successfully in this work by adding water to a mixed common solvent, such as N,N-dimethylmethanamide (DMF)/chloroform, DMF/tetrahydrofuran (THF), or DMF/toluene. The energy dispersive X-ray (EDX) spectrum indicates that QDs are located at the interface between the core and shell of the spherical co-assemblies. The co-assembly process during water addition is traced by transmission electron microscopy (TEM) and turbidity measurement. Spherical co-assemblies are formed through budding from bilayers of the block copolymer and QDs. The morphology of the co-assemblies is related to the miscibility of the QD-dispersing solvents with water and the morphology changes from a spherical to a vesicle-like structure with DMF/toluene. Increasing THF content in the mixed solvent causes morphological transitions from spherical co-assemblies to multi-branched cylinders and micelles where QDs are located in the central core. Increasing chloroform content yields vesicle-like structures with protruding rods on the surface. The mechanism of the morphological transitions is also discussed in detail.
关 键 词:Co-assembly Mixed common solvent PS-B-PEO Solvent composition.
分 类 号:TB332[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...