Thermoelectric response of spin polarization in Rashba spintronic systems  被引量:1

Thermoelectric response of spin polarization in Rashba spintronic systems

在线阅读下载全文

作  者:Cong Xiao Dingping Li Zhongshui Ma 

机构地区:[1]School o.f Physics, Peking University, Beijing 100871, China [2]Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

出  处:《Frontiers of physics》2016年第3期113-121,共9页物理学前沿(英文版)

摘  要:Motivated by the recent discovery of a strongly spin-orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X = Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energy- and band-dependent transport time, we present tion for elastic scattering. Using this solution, an exact solution of the linearized Boltzmann equa- we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy EF when EF lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller EF. We show that, as a function of EF, the temperature- gradient-induced spin polarization increases continuously to a saturation value when EF decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.Motivated by the recent discovery of a strongly spin-orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X = Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energy- and band-dependent transport time, we present tion for elastic scattering. Using this solution, an exact solution of the linearized Boltzmann equa- we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy EF when EF lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller EF. We show that, as a function of EF, the temperature- gradient-induced spin polarization increases continuously to a saturation value when EF decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.

关 键 词:thermoelectric response spin polarization Rashba spin-orbit coupling Boltzmannequation analytical solution 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象