基于EEMD的发动机失火故障检测  被引量:3

Misfire Detection of Engine Based on EEMD

在线阅读下载全文

作  者:王德军[1] 张贤达[1] 鲍亚新 

机构地区:[1]吉林大学通信工程学院,长春130012

出  处:《吉林大学学报(信息科学版)》2016年第4期461-467,共7页Journal of Jilin University(Information Science Edition)

基  金:国家自然科学基金重点资助项目(61034001)

摘  要:针对发动机失火故障信息难以提取的问题,提出了一种基于集合经验模态分解(EEMD:Ensemble Empirical Mode Decomposition)的发动机失火故障检测方法。该方法能自适应地将曲轴转速信号分解为若干个本征模态函数(IMF:Intrinsic Mode Function),确定包含故障信息的IMF,通过该IMF幅值的异常波动,可以较准确地判断发动机发生失火故障的时间。并通过AMESim建立了发动机仿真模型,从中采集了3种情况的曲轴转速信号,分别利用EEMD分解并最终检测失火故障。实验结果表明,该方法能有效提取故障信息,实现失火故障的离线检测,并可以作为在线检测的基础。Crankshaft speed signals of engine are non-stationary,and it is difficult to extract misfire fault information from them effectively. For this purpose,a misfire detection method of engine based on EEMD( Ensemble Empirical Mode Decomposition) is proposed. The EEMD method can adaptively decompose a crankshaft signal into several IMFs( Intrinsic Mode Function). The IMF component which contains fault information can be determined. Through observing the abnormal amplitude fluctuations of the IMF,the time range of engine misfire can be apparently estimated. Besides,a simulation model of engine is built by AMESim,and the crankshaft speed signals of three conditions are collected. Then these signals are decomposed by EEMD respectively to detect misfire fault. The results show that this method can effectively extract fault information to accomplish the off-line detection of misfire fault,and it can also be used as the foundation of on-line detection.

关 键 词:发动机 失火故障 曲轴转速 集合经验模态分解 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象