Multilevel Pattern Mining Architecture for Automatic Network Monitoring in Heterogeneous Wireless Communication Networks  被引量:8

Multilevel Pattern Mining Architecture for Automatic Network Monitoring in Heterogeneous Wireless Communication Networks

在线阅读下载全文

作  者:Zhiguo Qu John Keeney Sebastian Robitzsch Faisal Zaman Xiaojun Wang 

机构地区:[1]Jiangsu Engineering Center of Network Monitoring,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]School of Electronic Engineering,Dublin City University,Dublin,Ireland [3]Network Management Lab,Athlone,Ireland

出  处:《China Communications》2016年第7期108-116,共9页中国通信(英文版)

基  金:funded by the Enterprise Ireland Innovation Partnership Programme with Ericsson under grant agreement IP/2011/0135[6];supported by the National Natural Science Foundation of China(No.61373131,61303039,61232016,61501247);the PAPD;CICAEET funds

摘  要:The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.This paper presents a multilevel pattern mining architecture to support automatic network management by discovering interesting patterns from telecom network monitoring data.This architecture leverages and combines existing frequent itemset discovery over data streams,association rule deduction,frequent sequential pattern mining,and frequent temporal pattern mining techniques while also making use of distributed processing platforms to achieve high-volume throughput.The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.This paper presents a multilevel pattern mining architecture to support automatic network management by discovering interesting patterns from telecom network monitoring data.This architecture leverages and combines existing frequent itemset discovery over data streams,association rule deduction,frequent sequential pattern mining,and frequent temporal pattern mining techniques while also making use of distributed processing platforms to achieve high-volume throughput.

关 键 词:automatic network monitoring sequential pattern mining episode discovery module 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象