检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2016年第8期1122-1126,共5页Journal of Northeastern University(Natural Science)
基 金:国家科技重大专项(2013ZX04011-011)
摘 要:利用微分变换法分析具有弹性支承的悬臂式输流管路的流体诱发振动问题.首先对振动微分方程无量纲化,其次采用微分变换法获得各阶微分的递推关系,进而求解得到不计流速时的前四阶固有频率及振型函数的通用表达式.在此基础上,计算并得到了计及流速时固有频率随流速和弹性系数的变化,同时研究了不同弹性系数及质量比下的临界流速及稳定性.通过对比和分析,证实了微分变换法具有较高的精度和实用性.微分变换法可作为设计管路支承形式的参考.The flow-induced vibration of cantilevered fluid-conveying pipes with elastic support was analyzed by differential transformation method(DTM).Firstly,the motion equation was non-dimensionalized,then,the recurrence relation among each derivative was derived by DTM.Furthermore,the former four dimensionless frequencies and the general expression for mode shapes were obtained without consideration of fluid flow.On this basis,the relationship between frequency and flowvelocity,elastic coefficient was worked out,and the critical velocity and stability condition were investigated simultaneously.DTMwas verified to be of high accuracy and practicability by comparison and analysis.Besides,DTMcould be referred when support format for pipes are designed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28