检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州电子科技大学机械工程学院,杭州310018
出 处:《计算机辅助设计与图形学学报》2016年第9期1598-1604,共7页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(51275141;51305112);浙江省自然科学基金(LY14E050026)
摘 要:为了高效率地构建高精度的代理模型,提出一种利用连续多模态特性探索的自适应Kriging模型构建方法.首先在获得一个初始Kriging模型后,利用留一交叉验证策略计算出代理模型的精度;然后利用相对误差准则,从样本库中挑选出误差最大的样本点;再通过泰勒级数展开式快速获得新样本点及其近似响应值;如此不断地更新样本库及Kriging模型,最终使模型精度达到预定要求.对2个数学算例和1个工程实例进行了应用分析,结果表明,该方法能够以较快的速度得到较高精度的Kriging模型.To build a highly accurate metamodel with high efficiency, an adaptive Kriging modeling method using the exploration of continuous and multi-modal characteristics was proposed. After obtaining an initial Kriging model, the leave-one-out cross-validation strategy was utilized to calculate the metamodel's accuracy. Then the sample point with the maximum error was selected from the sample database according to the relative error criterion. A new sample point and its approximate response value were acquired quickly by using the Taylor Series expansion. With the above procedures repeated, the sample database and the Kriging model were updated in order to make the Kriging model achieve the required accuracy. The method was applied to two mathematical problems and an engineering problem. Results show that the method can get a higher accurate Kriging model with higher efficiency.
关 键 词:KRIGING模型 留一交叉验证策略 相对误差准则 泰勒级数展开式
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117