AMSR-E卫星资料陆面干扰的气候特征分析  被引量:5

Trend analysis of radio-frequency interference signals of Advanced Microwave Scanning Radiometer data over land

在线阅读下载全文

作  者:冯呈呈[1,2] 董慧杰[1] 

机构地区:[1]南京信息工程大学大气科学学院,江苏南京210044 [2]大连市气象台,辽宁大连116001

出  处:《大气科学学报》2016年第4期536-545,共10页Transactions of Atmospheric Sciences

基  金:公益性行业(气象)科研专项(GYHY201406008);江苏省普通高校研究生科研创新计划资助项目(CXLX13_483;KYLX_0822);江苏高校优势学科建设工程资助项目(PAPD)

摘  要:先进微波辐射计(AMSR-E)的低频特性使其更容易受到无线电频率干扰(RFI),本文首先对比了谱差法和双主成分分析(Double Principal Component Analysis,DPCA)方法这两种RFI识别算法的差异,验证了DPCA方法的适用性,然后选用DPCA方法对2002年9月—2011年9月AMSR-E陆面升轨亮温月平均数据中的RFI进行识别,并分析其多年变化特征。DPCA方法可以有效地识别出AMSR-E全球范围内陆地亮温数据中的RFI分布情况。识别结果显示:1)C波段中的RFI主要分布在美国、东亚及印度—阿拉伯半岛地区;X波段主要分布在欧洲及东亚地区。2)各区域的RFI空间位置及强度随时间会发生变化,其原因可能是由于基础设施及使用无线电频谱的变化造成。3)不同区域月平均亮温数据中识别出的RFI信号数量存在季节变化,并且C波段中识别出的RFI数量随时间减少,X波段中随时间增加。With the improvement of weather forecasting and the development of technology, the measurements of meteorological satellites have gradually become an important supplement to conventional observations.Owing to its advantage of all-day observation,Advanced Microwave Scanning Radiometer(AMSR-E) measurements have been widely used in research on global environmental change.The AMSR-E data record is very important in climate change monitoring and data assimilation in numerical weather prediction, but man-made radiative signals are also received by the microwave instrument and interfere with the natural thermal emissions of Earth.This phenomenon of satellite observations being mixed with signals from active microwave transmitters is referred to as Radio-Frequency Interference(RFI).RFI causes severe contamination of passive and active microwave sensing observations and corresponding retrieval products over some continents.The presence of RFI signals will reduce the scientific value of satellite measurements, so RFI signals should be detected and filtered before applying the microwave data in retrieval and data assimilation.With the long-term AMSR-E data being used in climate research, the characteristics of RFI signals also need to be analyzed. This paper focuses on the characteristics of RFI signals from AMSR-E data and their trend from September 2002 to September 2011.In this study, firstly,the spectral difference method and double principal component anal- ysis (DPCA) method are used to obtain the spatial distribution of RFI signals.Compared to the spectral difference method, the DPCA method can detect RFI signals even over snow-covered areas,by taking advantage of the correlation of different channels for natural and snow radiation, and the de-correlation caused by RFI,and it is more robust and suitable for application worldwide.Then, the DPCA method is chosen to detect the RFI signals from the AMSR-E data over land from September 2002 to September 2011,and the trend of RFI signals with time is analyzed.

关 键 词:卫星资料 先进微波辐射计 无线电频率干扰 双主成分分析 气候趋势分析 

分 类 号:P407[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象