检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《动力工程学报》2016年第8期594-599,607,共7页Journal of Chinese Society of Power Engineering
基 金:国家自然科学基金资助项目(61262048)
摘 要:基于Matlab人工智能工具包对某300MW燃煤电站锅炉进行了燃烧优化混合建模:利用BP神经网络建立了锅炉燃烧特性的BP神经网络模型,用以预测锅炉热效率和NO_x排放质量浓度.基于该模型,以锅炉热效率和NO_x排放质量浓度为目标,结合Matlab遗传算法工具包对锅炉进行燃烧优化,并采用权重系数法将多目标优化问题转化为单目标优化问题.结果表明:锅炉热效率和NO_x排放质量浓度校验样本的相对误差平均绝对值分别为0.142%和1.790%,该模型具有良好的准确性和泛化能力;权重系数法可根据实际情况,以锅炉热效率或NO_x排放质量浓度为优化重点选取相应的权重系数,对燃烧优化具有一定的指导意义.A hybrid model was set up using Matlab artificial intelligence toolkit to optimize the combustion in a 300 MW coal fired boiler. The specific way is to establish a BP (back propagation) neural network model for boiler combustion properties to predict the thermal efficiency and NO, emission concentration of the boiler, and then to optimize the boiler combustion with Matlab artificial intelligence toolkit based on the model by taking the thermal efficiency and NO, emission concentration as the target variables, during which the multi-objective optimization problems were transformed into single-objective optimization problems by weight coefficient method. Results show that the average relative errors of boiler thermal efficien cy and NOz emission are 0. 142% and 1.790% respectively, indicating good accuracy and strong generaliza tion ability of the model. By weight coefficient method, boiler thermal efficiency and NOx emission concentration can be chosen as the key optimization objectives by selecting corresponding weight coefficients, which therefore may serve as a reference for combustion optimization of similar coal-fired boilers.
关 键 词:电站锅炉 锅炉热效率 NOX排放 遗传算法 多目标优化
分 类 号:TK227.1[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15