检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史策[1] 高峰#副教授 陈连城[2] 王连国[4]
机构地区:[1]中国科学院大学遥感与数字地球研究所,北京100101 [2]大同大学煤炭工程学院,山西大同037003 [3]武汉理工大学土木工程与建筑学院,湖北武汉430070 [4]中国矿业大学深部岩土力学与地下工程国家重点实验室
出 处:《中国安全科学学报》2016年第7期119-124,共6页China Safety Science Journal
摘 要:为更合理有效地解决煤矿开采引起的冲击地压危险性预测问题,以忻州窑煤矿冲击地压事故为工程背景,采用一种数据降维算法—主成分分析法(PCA),对广义回归神经网络(GRNN)的输入样本进行信息压缩,构建冲击地压危险性预测的PCA-GRNN模型。通过PCA法提取影响冲击地压强度的煤层厚度、倾角等9个因素,得到冲击地压危险性影响因素的前4个主成分因子表达式,并构建BPNN,GRNN和PCA-BP等另外3种模型,验证PCA-GRNN法预测冲击地压危险性的智能性和泛化能力。结果表明,所建PCA-GRNN模型平均训练误差为3.5%,平均预测误差为3.6%,有很好的预测能力和泛化能力。In order to solve pressure bump prediction problem caused by coal mining more reasonably and effectively, the Xinzhouyao coal mine was taken as an example, the PCA method, a data dimensionality reduction algorithm was used to compress information contained in input sample to GRNN, a PCA-GRNN model was built for predicting pressyre bump. Nine factors affecting intensity of pressure bump were identified such as thickness and angle of coal seam. Four principal components factors expressions of pressure bump were obtained. Models of BPNN, GRNN and PCA-BP were built to predict pressure bump too. The results demonstrate that the average training error of the PCA-GRNN model is 3.5%, the average prediction error is 3.6%, which has good predictive ability and generalization ability, and can be used to ensure the safety production of coal mine.
关 键 词:冲击地压 主成分分析法(PCA) 广义回归神经网络(GRNN) 电磁辐射 预警技术
分 类 号:X936[环境科学与工程—安全科学] TD324[矿业工程—矿井建设]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31