蓖麻毒素单抗制备及上转发光免疫层析定量检测方法研究  被引量:1

Preparation of monoclonal antibodies against ricin toxin and development of upconverting phosphor technology-based lateral flow assay for its quantitative detection

在线阅读下载全文

作  者:王晓晨[1,2,3] 周蕾[2,3] 孙崇云[4] 赵勇[2,3] 王鑫蕊[2,3] 张平平[2,3] 杨瑞馥[2,3] 马馨[1] 

机构地区:[1]吉林农业大学动物科学技术学院,长春130118 [2]军事医学科学院微生物流行病研究所病原微生物生物安全国家重点实验室,北京101071 [3]生物应急与临床POCT北京市重点实验室BZ0329,北京101071 [4]解放军总医院临床榆验科,北京100853

出  处:《军事医学》2016年第8期676-679,共4页Military Medical Sciences

基  金:国家863计划资助项目(2013AA032205);北京市科技新星计划资助项目(Z151100000315086);国家科技重大专项资助项目(2013ZX10004101-003;2012ZX10004801-002-004;2012ZX10004801-004-015)

摘  要:目的建立一种可快速、精确地对蓖麻毒素(RT)进行定量检测的上转发光免疫检测技术(UPT-LF),即RT-UPT-LF。方法采用杂交瘤细胞技术制备蓖麻毒素单克隆抗体并对效价进行评价;采用效价最高的4种单抗分别与上转发光纳米颗粒(UCP-NP)共价偶联,分别作为检测带,进而两两配伍,确定最优的配伍组合条件建立RTUPT-LF方法;对RT-UPT-LF的敏感性、精密性、定量能力和特异性进行评价。结果与结论所建立的RT-UPT-LF方法可在15 min内完成对蓖麻毒素的检测,灵敏度可达0.5 ng/ml,定量范围为0.5-1000 ng/ml,与其他高浓度毒素无非特异反应,该法为蓖麻毒素检测提供了一种新手段。Objective To develop an up-converting phosphor technology based lateral flow assay( UPT-LF) to detect ricin toxin( RT) quickly,accurately and quantitatively. Methods Ricin-monoclonal antibodies were prepared and their affinity was evaluated before four types of monoclonal antibodies with the highest titer were applied to couple with the upconverting phosphor nano-particles( UCP-NPs) as the bio-conjugate and disperse on the analysis membrane as the test line,respectively. Following systematic optimization to establish the RT-UPT-LF strip,the sensitivity,precision,quantitative ability and specificity of RT-UPT-LF were evaluated. Results The detection could be accomplished within 15 min and the detection limit of the RT-UPT-LF assay could reach 0. 5 ng / ml within the quantitative detection range of 0. 5- 1000 ng /ml. Other non-specific toxins at a concentration of 1000 ng / ml did not cause any non-specific reactions. Conclusion The developed RT-UPT-LF strip provides a new means for on-site quantitative detection of ricin toxin.

关 键 词:蓖麻毒素 上转发光纳米颗粒 免疫层析技术 快速定量检测 

分 类 号:R446.6[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象