能量检测中的BPSK信号最优检测门限  被引量:8

The Best Detection Threshold for BPSK Signals Based on Energy Detection Method

在线阅读下载全文

作  者:陈婷[1] 张博[1] 牛德智[2] 任晓岳[3] 吴昊谦 

机构地区:[1]西安邮电大学电子工程学院,西安710061 [2]西安通信学院,西安710106 [3]空军工程大学理学院,西安710051

出  处:《空军工程大学学报(自然科学版)》2016年第4期75-80,共6页Journal of Air Force Engineering University(Natural Science Edition)

基  金:陕西省自然科学基础研究计划(2014JM8344)

摘  要:在认知无线电中,授权用户对主用户进行频谱感知时,会存在使得虚警与漏检概率之和最小的最优检测门限。以研究高斯白噪声环境下BPSK信号的有效检测问题为目的。通过对能量检测统计量的数学分布进行理论推导,将最优检测门限问题转化为和值最小的求解问题,给出了由采样点数、噪声方差、信噪比所决定的最优检测门限计算公式,并给出证明。在不同信噪比下对和值曲线变化规律的仿真说明了最优检测门限的存在性。通过对文中门限和恒虚警概率门限下的检测概率性能分析、文中门限和恒检测概率门限下的虚警概率性能分析、以及不同指标变化时其他2种门限向文中门限收敛的性能分析,说明了最优检测门限下的检测性能较优。此外,蒙特卡洛实验验证了理论分析的正确性。Effective detection problem for BPSK (binary phase shift keying)signals under condition of Gaussian white noise environments is studied.In cognitive radio,when second user senses spectrum from first user,this makes the best detection threshold with the minimum of sum of false alarm and missed de-tection rate in existence.By theoretical derivation for distribution character of energy detection static,the best detection threshold problem is converted to solution of the minimum of the sum,computation expres-sion is determined by sampling length,noise variance and signal to noise ratio (SNR)are given.The simu-lation of sum value curve variety in different SNR shows that the best detection threshold is in existence. The performance of the best threshold is even better than before by analysis for detection ratio performance between the threshold and the one in constant false alarm ratio (CFAR),false alarm ratio performance be-tween the threshold and the one in constant detection ratio (CDR),other two thresholds'convergence to the threshold performance.Besides,Monte Carlo experiment shows that the mathematic analysis is cor-rect.

关 键 词:高斯白噪声 BPSK信号 能量检测 最优检测门限 蒙特卡洛 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象