检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学航空航天工程学院,西安710038
出 处:《空军工程大学学报(自然科学版)》2016年第4期101-106,共6页Journal of Air Force Engineering University(Natural Science Edition)
基 金:国家自然科学基金(71501184)
摘 要:针对共生生物搜索算法搜索速度慢、收敛精度不高且易早熟的缺点,提出了一种多策略自适应改进算法。首先,根据适应度将种群分为3个群体,每个群体采用不同的搜索策略以实现不同功能。其次,提出了一种基于实时信息反馈的的混合搜索策略,使其搜索策略实现自适应调整。最后,对超边界个体进行变异操作,以增加种群多样性。对14个标准测试函数的仿真测试表明改进算法全局优化能力更强,具有更好的搜索速度和收敛精度。Aimed at the problems that Symbiotic Organisms Search (SOS)algorithm is poor in conver-gence,low in searching precision and ease of premature convergence,a multi-strategy adaptive algorithm is proposed.Firstly,according to the fitness,populations can be divided into three groups,and each group with different strategies can achieve different functions.Secondly,a hybrid search strategy based on adap-tive scaling factor can make its search strategy realization of the adaptive adj ustment.Finally,in order to maintain the population diversity,a mutation is utilized when the individual beyond the boundary.Experi-ments are conducted on the 14 benchmark functions,and the results show that the MSASOS algorithm improves obviously the performance in convergence speed,precision and global optimization.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73