Influence of Freeze-thaw Cycles on Properties of Integral Water Repellent Concrete  被引量:2

Influence of Freeze-thaw Cycles on Properties of Integral Water Repellent Concrete

在线阅读下载全文

作  者:马志鸣 WITTMANN Folker H 肖建庄 ZHAO Tiejun 

机构地区:[1]Department of Strucutral Engineering,Tongji University [2]College of Civil Engineering,Qingdao Technological University [3]Aedificat Institute Freiburg

出  处:《Journal of Wuhan University of Technology(Materials Science)》2016年第4期851-856,共6页武汉理工大学学报(材料科学英文版)

基  金:Funded by the National Natural Science Foundation of China(51438007);the National Basic Research Program of China(973 Program)(2009CB623203)

摘  要:Service life of reinforced concrete structures usually was designed on the basis of one selected deteriorating mechanism as for instance carbonation,chloride penetration,and frost action.It could be shown in the meantime by numerous authors,however,that combined actions such as chloride penetration under mechanical load or chloride penetration in combination with freeze-thaw cycles may shorten the service life of reinforced concrete structures more than individual processes acting alone.We have found that chloride penetration is accelerated significantly by freeze-thaw cycles.Frost damage not only reduces mechanical strength and elastic modulus but migration of chloride is facilitated in the damaged pore structure.Chloride penetration can be retarded by the addition of silane emulsion to the fresh concrete.In this way Integral Water Repellent Concrete(IWRC) can be produced.Migration of water and ions dissolved in water can not be prevented by integral water repellent treatment but it is slowed down.The combination of damage mechanisms and the protective measures by integral water repellent treatment have to be taken into consideration in realistic service life prediction and design.Service life of reinforced concrete structures usually was designed on the basis of one selected deteriorating mechanism as for instance carbonation,chloride penetration,and frost action.It could be shown in the meantime by numerous authors,however,that combined actions such as chloride penetration under mechanical load or chloride penetration in combination with freeze-thaw cycles may shorten the service life of reinforced concrete structures more than individual processes acting alone.We have found that chloride penetration is accelerated significantly by freeze-thaw cycles.Frost damage not only reduces mechanical strength and elastic modulus but migration of chloride is facilitated in the damaged pore structure.Chloride penetration can be retarded by the addition of silane emulsion to the fresh concrete.In this way Integral Water Repellent Concrete(IWRC) can be produced.Migration of water and ions dissolved in water can not be prevented by integral water repellent treatment but it is slowed down.The combination of damage mechanisms and the protective measures by integral water repellent treatment have to be taken into consideration in realistic service life prediction and design.

关 键 词:penetration silane realistic compressive instance modulus emulsion migration frost deterioration 

分 类 号:TU528[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象