检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lili MEI Heyan HUANG Xiaochi WEI Xianling MAO
出 处:《Science China(Information Sciences)》2016年第9期7-17,共11页中国科学(信息科学)(英文版)
基 金:supported by State Key Program of National Natural Science of China(Grant No.61132009);National High Technology Research and Development Program of China(863 Program)(Grant No.2015AA015404);National Natural Science Foundation of China(Grant Nos.61201351,61402036)
摘 要:New words could benefit many NLP tasks such as sentence chunking and sentiment analysis. However, automatic new word extraction is a challenging task because new words usually have no fixed language pattern, and even appear with the new meanings of existing words. To tackle these problems, this paper proposes a novel method to extract new words. It not only considers domain specificity, but also combines with multiple statistical language knowledge. First, we perform a filtering algorithm to obtain a candidate list of new words. Then, we employ the statistical language knowledge to extract the top ranked new words. Experimental results show that our proposed method is able to extract a large number of new words both in Chinese and English corpus, and notably outperforms the state-of-the-art methods. Moreover, we also demonstrate our method increases the accuracy of Chinese word segmentation by 10% on corpus containing new words.New words could benefit many NLP tasks such as sentence chunking and sentiment analysis. However, automatic new word extraction is a challenging task because new words usually have no fixed language pattern, and even appear with the new meanings of existing words. To tackle these problems, this paper proposes a novel method to extract new words. It not only considers domain specificity, but also combines with multiple statistical language knowledge. First, we perform a filtering algorithm to obtain a candidate list of new words. Then, we employ the statistical language knowledge to extract the top ranked new words. Experimental results show that our proposed method is able to extract a large number of new words both in Chinese and English corpus, and notably outperforms the state-of-the-art methods. Moreover, we also demonstrate our method increases the accuracy of Chinese word segmentation by 10% on corpus containing new words.
关 键 词:new word extraction word segmentation domain specificity statistical language knowledge domain word extraction
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.212.175