Diagrams of Hopf algebras with the Chevalley property  

Diagrams of Hopf algebras with the Chevalley property

在线阅读下载全文

作  者:FAN Zhong-ping LU Di-ming YU Xiao-lan 

机构地区:[1]School of Mathematical Science, Ocean University of China [2]Department of Mathematics, Zhejiang University [3]Department of Mathematics, Hangzhou Normal University

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2016年第3期367-378,共12页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(11271319,11301126)

摘  要:In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.

关 键 词:Hopf algebra COALGEBRA coradical Nichols algebra pointed Chevalley property 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象