Electro-magnetohydrodynamic Flow of Biofluid Induced by Peristaltic Wave: A Non-newtonian Model  被引量:2

Electro-magnetohydrodynamic Flow of Biofluid Induced by Peristaltic Wave: A Non-newtonian Model

在线阅读下载全文

作  者:Gopal Chandra Shit Nayan Kumar Ranjit Aniruddha Sinha 

机构地区:[1]Department of Mathematics, Jadavpur University, Kolkata - 700032, India [2]Yogoda Satsanga Palpara Mahavidyalaya, Purba Medinipur - 721458, India

出  处:《Journal of Bionic Engineering》2016年第3期436-448,共13页仿生工程学报(英文版)

摘  要:This article aims to develop a mathematical model for peristaltic transport of magnetohydrodynamic flow of biofluids through a micro-channel with rhythmically contracting and expanding walls under the influence of an applied electric field. The couple stress fluid model is considered to represent the non-Newtonian characteristics ofbiofluids. The velocity slip condition at the channel walls is taken into account because of the hyclrophilic/hydrophobic interaction with negatively charged walls. The essential features of the electromagnetohydrodynamic flow of biofluid through micro-channels are clearly highlighted in the variations of the non-dimensional parameters of the physical quantities of interest such as the velocity, wall shear stress, pressure gradient, pressure rise per wave length, frictional force at the channel walls and the distribution of stream function. It reveals that the flow ofhiofluid is appreciably influenced by the sufficient strength of externally applied magnetic field and electro-osmotic parameter. The velocity slip condition reduces the frictional force at the channel wall. Moreover, the formation of the trapping bolus strongly depends on electro-osmotic parameter and magnetic field strength.This article aims to develop a mathematical model for peristaltic transport of magnetohydrodynamic flow of biofluids through a micro-channel with rhythmically contracting and expanding walls under the influence of an applied electric field. The couple stress fluid model is considered to represent the non-Newtonian characteristics ofbiofluids. The velocity slip condition at the channel walls is taken into account because of the hyclrophilic/hydrophobic interaction with negatively charged walls. The essential features of the electromagnetohydrodynamic flow of biofluid through micro-channels are clearly highlighted in the variations of the non-dimensional parameters of the physical quantities of interest such as the velocity, wall shear stress, pressure gradient, pressure rise per wave length, frictional force at the channel walls and the distribution of stream function. It reveals that the flow ofhiofluid is appreciably influenced by the sufficient strength of externally applied magnetic field and electro-osmotic parameter. The velocity slip condition reduces the frictional force at the channel wall. Moreover, the formation of the trapping bolus strongly depends on electro-osmotic parameter and magnetic field strength.

关 键 词:peristaltic transport couple stress fluid MAGNETOHYDRODYNAMICS ELECTRO-OSMOSIS 

分 类 号:O35[理学—流体力学] TG376.3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象