Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau  被引量:12

Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau

在线阅读下载全文

作  者:Xiaowei Li Xuanxue Mo Mark Scheltens Qi Guan 

机构地区:[1]State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources,China University of Geosciences [2]School of Earth and Space Sciences, Peking University [3]College of Resources, Hebei GEO University

出  处:《Journal of Earth Science》2016年第4期545-570,共26页地球科学学刊(英文版)

基  金:funded by the National Natural Science Foundation of China (Nos. 41403028, 40830317);the China Postdoctoral Science Foundation (No. 2015T80113);China University of Geosciences (No. GMPR201509);the Fundamental Research Funds for the Central Universities of China (No. 2652015018)

摘  要:The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves(MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with ~B(Ca+Na)〉1.5, and Si=6.81-7.42 apfu for the host rocks and Si=6.77-7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high Mg O(13.19 wt.%-13.03 wt.%) contents, but define a narrow range of Al apfu(atoms per formula unit) variations(2.44-2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al.(2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations(Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton.The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves(MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with ~B(Ca+Na)〉1.5, and Si=6.81-7.42 apfu for the host rocks and Si=6.77-7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high Mg O(13.19 wt.%-13.03 wt.%) contents, but define a narrow range of Al apfu(atoms per formula unit) variations(2.44-2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al.(2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations(Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton.

关 键 词:Mamba pluton Gangdese terrane MMEs K-feldspar megacrysts magma mixing P-Tconditions oxygen fugacity in-situ trace element. 

分 类 号:P588.1[天文地球—岩石学] P574[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象